1
|
Kou P, Levy ES, Nguyen AD, Zhang D, Chen S, Cui Y, Zhang X, Broccatelli F, Pizzano J, Cantley J, Bortolon E, Rousseau E, Berlin M, Dragovich P, Sethuraman V. Development of Liposome Systems for Enhancing the PK Properties of Bivalent PROTACs. Pharmaceutics 2023; 15:2098. [PMID: 37631312 PMCID: PMC10458015 DOI: 10.3390/pharmaceutics15082098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are a promising new technology in drug development. They have rapidly evolved in recent years, with several of them in clinical trials. While most of these advances have been associated with monovalent protein degraders, bivalent PROTACs have also entered clinical trials, although progression to market has been limited. One of the reasons is the complex physicochemical properties of the heterobifunctional PROTACs. A promising strategy to improve pharmacokinetics of highly lipophilic compounds, such as PROTACs, is encapsulation in liposome systems. Here we describe liposome systems for intravenous administration to enhance the PK properties of two bivalent PROTAC molecules, by reducing clearance and increasing systemic coverage. We developed and characterized a PROTAC-in-cyclodextrin liposome system where the drug was retained in the liposome core. In PK studies at 1 mg/kg for GNE-01 the PROTAC-in-cyclodextrin liposome, compared to the solution formulation, showed a 80- and a 380-fold enhancement in AUC for mouse and rat studies, respectively. We further investigated the same PROTAC-in-cyclodextrin liposome system with the second PROTAC (GNE-02), where we monitored both lipid and drug concentrations in vivo. Similarly, in a mouse PK study of GEN-02, the PROTAC-in-cyclodextrin liposome system exhibited enhancement in plasma concentration of a 23× increase over the conventional solution formulation. Importantly, the lipid CL correlated with the drug CL. Additionally, we investigated a conventional liposome approach for GNE-02, where the PROTAC resides in the lipid bilayer. Here, a 5× increase in AUC was observed, compared to the conventional solution formulation, and the drug CL was faster than the lipid CL. These results indicate that the different liposome systems can be tailored to translate across multiple PROTAC systems to modulate and improve plasma concentrations. Optimization of the liposomes could further improve tumor concentration and improve the overall therapeutic index (TI). This delivery technology may be well suited to bring novel protein targeted PROTACs into clinics.
Collapse
Affiliation(s)
- Ponien Kou
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (P.K.); (E.S.L.); (A.D.N.)
| | - Elizabeth S. Levy
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (P.K.); (E.S.L.); (A.D.N.)
| | - An D. Nguyen
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (P.K.); (E.S.L.); (A.D.N.)
| | - Donglu Zhang
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Shu Chen
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Yusi Cui
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Xing Zhang
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Fabio Broccatelli
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Jennifer Pizzano
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Jennifer Cantley
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Elizabeth Bortolon
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Emma Rousseau
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Michael Berlin
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Peter Dragovich
- Medicinal Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Vijay Sethuraman
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (P.K.); (E.S.L.); (A.D.N.)
| |
Collapse
|
3
|
Zhao B, Li H, Su Y, Tian K, Zou Z, Wang W. Synthesis and Anticancer Activity of Bagasse Xylan/Resveratrol Graft-Esterified Composite Nanoderivative. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5166. [PMID: 35897598 PMCID: PMC9330801 DOI: 10.3390/ma15155166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022]
Abstract
Biomass materials are high-quality raw materials for the preparation of natural, green and highly active functional materials due to their rich active groups, wide sources and low toxicity. Bagasse xylan (BX) and resveratrol (Res) were used as raw materials to introduce ethylene glycol dimethacrylate (EGDMA) via grafting reaction to obtain the intermediate product BX/Res-g-EGDMA. The intermediate was esterified with 3-carboxyphenylboronic acid (3-CBA) to obtain the target product 3-CBA-BX/Res-g-EGDMA. The BX/Res-composite-modified nanoderivative with antitumor activity was synthesized with the nanoprecipitation method. The effects of the reaction conditions on the grafting rate (G) of BX/Res-g-EGDMA and the degree of substitution (DS) of 3-CBA-BX/Res-g-EGDMA were investigated using single-factor experiments. The results showed that under the optimized process conditions, G and DS reached 142.44% and 0.485, respectively. The product was characterized with FTIR, XRD, TG-FTC, 1H NMR and SEM, and its anticancer activity was simulated and tested. The results showed that 3-CBA-BX/Res-g-EGDMA had a spherical structure with an average particle size of about 100 nm and that its crystalline structure and thermal stability were different from those of the raw materials. In addition, 3-CBA-BX/Res-g-EGDMA showed the best docking activity with 2HE7 with a binding free energy of -6.3 kJ/mol. The inhibition rate of 3-CBA-BX/Res-g-EGDMA on MGC80-3 (gastric cancer cells) reached 36.71 ± 4.93%, which was 18 times higher than that of BX. Therefore, this material could be a potential candidate for biomedical applications.
Collapse
Affiliation(s)
- Bin Zhao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Heping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Yue Su
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Kexin Tian
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Zhiming Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Wenli Wang
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| |
Collapse
|