1
|
de la Mora-López DS, Madera-Santana TJ, Olivera-Castillo L, Castillo-Ortega MM, López-Cervantes J, Sánchez-Machado DI, Ayala-Zavala JF, Soto-Valdez H. Production and performance evaluation of chitosan/collagen/honey nanofibrous membranes for wound dressing applications. Int J Biol Macromol 2024; 275:133809. [PMID: 38996893 DOI: 10.1016/j.ijbiomac.2024.133809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Persistent bacterial infections are the leading risk factor that complicates the healing of chronic wounds. In this work, we formulate mixtures of polyvinyl alcohol (P), chitosan (CH), collagen (C), and honey (H) to produce nanofibrous membranes with healing properties. The honey effect at concentrations of 0 % (PCH and PCHC), 5 % (PCHC-5H), 10 % (PCHC-10H), and 15 % (PCHC-15H) on the physicochemical, antibacterial, and biological properties of the developed nanofibers was investigated. Morphological analysis by SEM demonstrated that PCH and PCHC nanofibers had a uniform and homogeneous distribution on their surfaces. However, the increase in honey content increased the fiber diameter (118.11-420.10) and drastically reduced the porosity of the membranes (15.79-92.62 nm). The addition of honey reduces the water vapor transmission rate (WVTR) and the adsorption properties of the membranes. Mechanical tests revealed that nanofibers were more flexible and elastic when honey was added, specifically the PCHC-15H nanofibers with the lowest modulus of elasticity (15 MPa) and the highest elongation at break (220 %). Also, honey significantly improved the antibacterial efficiency of the nanofibers, mainly PCHC-15H nanofibers, which presented the best bacterial reduction rates against Staphylococcus aureus (59.84 %), Pseudomonas aeruginosa (47.27 %), Escherichia coli (65.07 %), and Listeria monocytogenes (49.58 %). In vitro tests with cell cultures suggest that nanofibers were not cytotoxic and exhibited excellent biocompatibility with human fibroblasts (HFb) and keratinocytes (HaCaT), since all treatments showed higher or similar cell viability as opposed to the cell control. Based on the findings, PVA-chitosan-collagen-honey nanofibrous membranes have promise as an antibacterial dressing substitute.
Collapse
Affiliation(s)
- David Servín de la Mora-López
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| | - Tomás J Madera-Santana
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico.
| | - Leticia Olivera-Castillo
- Laboratorio de Nutrición Acuícola, Departamento Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Carr. Ant. a Progreso Km. 6, 97310 Mérida, Yucatán, Mexico
| | - María M Castillo-Ortega
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico
| | - Jaime López-Cervantes
- Departamento de Biotecnología y Ciencia de los Alimentos, Instituto Tecnológico de Sonora, 85000 Cd. Obregón, Sonora, Mexico.
| | - Dalia I Sánchez-Machado
- Departamento de Biotecnología y Ciencia de los Alimentos, Instituto Tecnológico de Sonora, 85000 Cd. Obregón, Sonora, Mexico
| | - Jesús F Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| | - Herlinda Soto-Valdez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
2
|
Radoor S, Jayakumar A, Karayil J, Kim JT, Siengchin S. Nelumbo nucifera flower extract incorporated alginate/polyvinyl alcohol films as a sustainable pH indicator for active food packaging applications. Int J Biol Macromol 2024; 273:133170. [PMID: 38880445 DOI: 10.1016/j.ijbiomac.2024.133170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
In recent years, there has been a growing demand for environmentally friendly smart packaging materials. Therefore, in this study, we developed an eco-friendly pH-sensitive indicator film through the solvent casting process, incorporating alginate, polyvinyl alcohol, garlic, and Nelumbo nucifera flower extract. The effect of extract on the chemical and physical properties of the film were extensively studied using various characterization techniques. XRD and FTIR reveal the strong interaction between the polymers and the extract. The incorporation of the extract influenced various parameters such as swelling behavior, water solubility, and moisture content, while also improving the film's thermal stability, biodegradability, as well as its antioxidant and antimicrobial properties. Interestingly, the film exhibited a color change in response to pH change. During shrimp storage, the film showed a visible transition from purple to green, indicating shrimp spoilage. Additionally, the film's ability to detect freshness was confirmed by measuring total volatile basic nitrogen (TVBN). These findings suggest that the PVA/alginate/garlic/Nelumbo nucifera film shows promise as an intelligent packaging material for real-time food monitoring applications.
Collapse
Affiliation(s)
- Sabarish Radoor
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College, West Hill, Kozhikode, India
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
3
|
Bal-Öztürk A, Torkay G, İdil N, Özkahraman B, Özbaş Z. Gellan gum/guar gum films incorporated with honey as potential wound dressings. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Jayakumar S, Philip J. Antimicrobial property of polyvinyl alcohol films containing extracts of Lawsonia inermis and Tamarindus indica. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Titanium dioxide nanoparticles and elderberry extract incorporated starch based polyvinyl alcohol films as active and intelligent food packaging wraps. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zhang Q, Zhang M, Wang T, Chen X, Li Q, Zhao X. Preparation of aloe polysaccharide/honey/PVA composite hydrogel: Antibacterial activity and promoting wound healing. Int J Biol Macromol 2022; 211:249-258. [PMID: 35568151 DOI: 10.1016/j.ijbiomac.2022.05.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022]
Abstract
Maintaining a moist and sterile environment is conducive to accelerating wound healing. To develop a natural wound dressing with good water retention capacity and antibacterial activity, we prepared a novel natural multifunctional hydrogel for infected wound healing, which combines the advantages of Aloe polysaccharide (AP) and honey. AP was extracted from Aloe barbadensis, and its structure was characterized by fourier transform infra-red (FT-IR) spectoscopy and nuclear magnetic resonance (NMR) spectroscopy. AP is an acetylated mannan composed of (1 → 4)β-Manp, which is acetylated at C-2, C-3 and C-6 positions. AP/Honey@PVA hydrogel was prepared by cross-linking AP, honey, PVA with borax, which has good mechanical strength and excellent biocompatibility for blood cells, NIH-3T3 cells and L929 cells. The hydrogels showed significant inhibitory effect on Staphylococcus aureus, Escherichia coli and Candida albicans, as well as accelerated the healing of infected full-thickness wound. This study reveals the structure of AP and proves that AP and honey composite hydrogel has potential application prospect in the therapy of infected wounds.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Miao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Quancai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
7
|
Effect of surfactants addition on physical, structure and antimicrobial activity of (Na-CMC/Na–Alg) biofilms. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Lu S, Tao J, Liu X, Wen Z. Baicalin-liposomes loaded polyvinyl alcohol-chitosan electrospinning nanofibrous films: Characterization, antibacterial properties and preservation effects on mushrooms. Food Chem 2022; 371:131372. [PMID: 34808772 DOI: 10.1016/j.foodchem.2021.131372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/12/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
To investigate antibacterial properties and application in food preservation of nanofibrous films (NFs), baicalin-liposomes (BCL-LPs) were loaded into polyvinyl alcohol-chitosan (PVA-CS) substrates to form NFs using electrospinning technology. The microstructure and phase identification of the NFs were characterized. The antibacterial properties and cytotoxicity of NFs were determined. The preservation of the NFs to mushrooms was evaluated. The results showed that smooth and uniform NFs were formed through molecular interaction between BCL-LPs and PVA-CS matrix. The NFs exhibited good antibacterial effects on Escherichia coli and Staphylococcus aureus due to the bacterial destruction resulting from the BCL delivery to bacterial cells by liposomes. In addition, the NFs were compatible with L929 fibroblasts. The BCL-LPs/PVA-CS NFs inhibited weight loss, browning, rancidity and bacterial growth as well as maintained the nutrients of mushrooms. The results show BCL-LPs/PVA-CS NFs possessed effective antibacterial properties, non-cytotoxicity and preservation performance, indicating the potential utilization as food-active packing.
Collapse
Affiliation(s)
- Shaobing Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junyu Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Xinfei Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Koosha M, Aalipour H, Sarraf Shirazi MJ, Jebali A, Chi H, Hamedi S, Wang N, Li T, Moravvej H. Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study. J Funct Biomater 2021; 12:61. [PMID: 34842756 PMCID: PMC8628993 DOI: 10.3390/jfb12040061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Chitosan/PVA hydrogel films crosslinked by the freeze-thaw method and containing honey and allantoin were prepared for application as wound dressing materials. The effects of the freeze-thaw process and the addition of honey and allantoin on the swelling, the gel content and the mechanical properties of the samples were evaluated. The physicochemical properties of the samples, with and without the freeze-thaw process, were compared using FTIR, DSC and XRD. The results showed that the freeze-thaw process can increase the crystallinity and thermal stability of chitosan/PVA films. The freeze-thaw process increased the gel content but did not have a significant effect on the tensile strength. The presence of honey reduced the swelling and the tensile strength of the hydrogels due to hydrogen bonding interactions with PVA and chitosan chains. Long-term cell culture experiments using normal human dermal fibroblast (NHDF) cells showed that the hydrogels maintained their biocompatibility, and the cells showed extended morphology on the surface of the hydrogels for more than 30 days. The presence of honey significantly increased the biocompatibility of the hydrogels. The release of allantoin from the hydrogel was studied and, according to the Korsmeyer-Peppas and Weibull models, the mechanism was mainly diffusional. The results for the antimicrobial activity against E. coli and S. aureus bacteria showed that the allantoin-containing samples had a more remarkable antibacterial activity against S. aureus. According to the wound healing experiments, 98% of the wound area treated by the chitosan/PVA/honey hydrogel was closed, compared to 89% for the control. The results of this study suggest that the freeze-thaw process is a non-toxic crosslinking method for the preparation of chitosan/PVA hydrogels with long term biocompatibility that can be applied for wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Mojtaba Koosha
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Hadis Aalipour
- Chemical and Polymer Engineering Group, Faculty of Engineering, Yazd University, Yazd 8915818411, Iran; (H.A.); (M.J.S.S.)
| | - Mohammad Javad Sarraf Shirazi
- Chemical and Polymer Engineering Group, Faculty of Engineering, Yazd University, Yazd 8915818411, Iran; (H.A.); (M.J.S.S.)
| | - Ali Jebali
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran;
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Sepideh Hamedi
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Nianxing Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| |
Collapse
|