1
|
Nguyen TA, Vo DK, Nguyen KTD, Tran DQ, Nguyen DM, Nguyen NT, Vu TT, Nguyen VT, Hoang D. Lightweight Biobased Polyurethane Composites Derived from Liquefied Polyol Reinforced by Biomass Sources with High Mechanical Property and Enhanced Fire-Resistance Performance. ACS OMEGA 2024; 9:19182-19192. [PMID: 38708195 PMCID: PMC11064040 DOI: 10.1021/acsomega.3c10330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Lightweight biobased insulation polyurethane (BPU) composite foams with high fire-resistance efficiency are interested in building effective energy and low environmental impact today. This study focuses on manufacturing lightweight BPU from liquefied bamboo polyols and biomass resources, including rice husk and wood flour. Then, they are combined with three flame retardant (FR) additives, such as aluminum diethyl phosphinate, aluminum trihydroxide, and diammonium phosphate, to improve their fire resistance performance. The physicochemical properties, microstructure, thermal stability, mechanical properties, and flame-retardant properties of the BPU composites are characterized to optimize their compromise properties. The results showed that composites with optimized FRs achieved UL94 V-0 and those with nonoptimized FRs reached UL94 HB. The limiting oxygen index exhibited that the fire resistance of BPU composites could increase up to 21-37% within FR additives. In addition, the thermal stability of BPU composites was significantly improved in a temperature range of 300-700 °C and the compressive strength of the BPU composites was also enhanced with the presence of FRs. The scanning electron microscopy observation showed an influence of FRs on the morphology and cell size of the BPU composites. The bio-PU-derived samples in this study showed significantly low thermal conductivity values, demonstrating their remarkable thermal insulation effectiveness.
Collapse
Affiliation(s)
- Tuan An Nguyen
- Faculty
of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Dang Khoa Vo
- Faculty
of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Khoa T. D. Nguyen
- Faculty
of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Doan Q. Tran
- Faculty
of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Dang Mao Nguyen
- Université
de Lorraine, LERMAB, 186 Rue de Lorraine, Cosnes-et-Romain 54400, France
| | - Ngoc Thuy Nguyen
- Faculty
of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Tien Trung Vu
- Faculty
of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Vy T. Nguyen
- Faculty
of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - DongQuy Hoang
- Faculty
of Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
2
|
Li J, Zhao H, Liu H, Sun J, Wu J, Liu Q, Zheng Y, Zheng P. Recent advances in metal-family flame retardants: a review. RSC Adv 2023; 13:22639-22662. [PMID: 37502822 PMCID: PMC10369043 DOI: 10.1039/d3ra03536k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The use of polymer materials is inextricably linked to our manufacturing life. However, most of them are easily combusted in the air and the combustion process generates a large amount of toxic fumes and dangerous smoke. This can result in injuries and property damage, as well as limiting their use. It is essential to enhance the flame-retardant properties and smoke suppression performance by using multiple flame retardants. Metal-based flame retardants have a unique chemical composition. They are environmentally friendly flame retardants, which can impart good smoke suppression, flame retardancy to polymers and further reduce the production of toxic gases. The differences in the compounds formed between the transition metals and the main group metals make them act differently as flame retardants for polymers. As a result, this study presents the research progress and flame-retardant mechanism of flame-retardant polymers for flame retardants from different groups of metals in the periodic table of elements in a systematic manner. In view of the differences between the main group metals and transition metals, the mechanism of their application in flame retardant polymer materials is carefully detailed, as are their distinct advantages and disadvantages. And ultimately, prospects for the development of transition metals and main group metals are outlined. It is hoped that this paper will provide valuable references and insights for scholars in the field.
Collapse
Affiliation(s)
- Junwei Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Haihan Zhao
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Huaiyin Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Jichang Sun
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Jing Wu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University Wuhan 430056 P. R. China
| | - Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China Guanghan 618307 P. R. China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Guanghan 618307 P. R. China
| |
Collapse
|
3
|
Cherednichenko K, Kopitsyn D, Smirnov E, Nikolaev N, Fakhrullin R. Fireproof Nanocomposite Polyurethane Foams: A Review. Polymers (Basel) 2023; 15:polym15102314. [PMID: 37242889 DOI: 10.3390/polym15102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
First introduced in 1954, polyurethane foams rapidly became popular because of light weight, high chemical stability, and outstanding sound and thermal insulation properties. Currently, polyurethane foam is widely applied in industrial and household products. Despite tremendous progress in the development of various formulations of versatile foams, their use is hindered due to high flammability. Fire retardant additives can be introduced into polyurethane foams to enhance their fireproof properties. Nanoscale materials employed as fire-retardant components of polyurethane foams have the potential to overcome this problem. Here, we review the recent (last 5 years) progress that has been made in polyurethane foam modification using nanomaterials to enhance its flame retardance. Different groups of nanomaterials and approaches for incorporating them into foam structures are covered. Special attention is given to the synergetic effects of nanomaterials with other flame-retardant additives.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Egor Smirnov
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Nikita Nikolaev
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, Kazan 420008, Russia
| |
Collapse
|
4
|
Graphene-based flame-retardant polyurethane: a critical review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Environmental Friendly Intumescent Flame Retardant Gives Epoxy Resin Excellent Fire Resistance and Mechanical Properties. Macromol Res 2022. [DOI: 10.1007/s13233-022-0059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Chabane H, Livi S, Duchet-Rumeau J, Gérard JF. New Epoxy Thermosets Organic-Inorganic Hybrid Nanomaterials Derived from Imidazolium Ionic Liquid Monomers and POSS ®Ph. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:550. [PMID: 35159895 PMCID: PMC8837961 DOI: 10.3390/nano12030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
New epoxy-amine networks issue from epoxydized imidazolium ionic liquid monomers (ILMs) and isophorone diamine (IPD) were modified for the first time by incorporating unmodified trisilanol phenyl POSS® (POSS®Ph-triol) and two ionic liquid-modified POSS®Ph (IL-g-POSS®Ph) having chloride (Cl-) and bis-trifluoromethanesulfonimidate (NTf2-) counter anions. Then, 5 wt.% of unmodified and IL-modified POSS®Ph were introduced in order to develop new solid electrolytes. First, a homogeneous dispersion of the POSS®Ph aggregates (diameters from 80 to 400 nm) into epoxy networks was observed. As a consequence, ILM/IPD networks with glass transition temperatures between 45 and 71 °C combined with an enhancement of the thermal stability (>380 °C) were prepared. Moreover, a significant increase of the hydrophobic character and high oil repellency of the network surfaces were obtained by using IL-g-POSS®Ph (19-20 mJ.m-2), opening up promising prospects for surface coating applications. Finally, these new epoxy networks exhibited outstanding high ionic conductivities (from 3.4 × 10-8 to 6.8 × 10-2 S.m-1) combined with an increase in permitivity.
Collapse
Affiliation(s)
- Houssém Chabane
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69621 Villeurbanne, France; (H.C.); (S.L.); (J.D.-R.)
- Laboratoire de Chimie Macromoléculaire, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16111 Algiers, Algeria
| | - Sébastien Livi
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69621 Villeurbanne, France; (H.C.); (S.L.); (J.D.-R.)
| | - Jannick Duchet-Rumeau
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69621 Villeurbanne, France; (H.C.); (S.L.); (J.D.-R.)
| | - Jean-François Gérard
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69621 Villeurbanne, France; (H.C.); (S.L.); (J.D.-R.)
| |
Collapse
|
7
|
Tang G, Liu M, Deng D, Zhao R, Liu X, Yang Y, Yang S, Liu X. Phosphorus-containing soybean oil-derived polyols for flame-retardant and smoke-suppressant rigid polyurethane foams. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Mirski R, Dukarska D, Walkiewicz J, Derkowski A. Waste Wood Particles from Primary Wood Processing as a Filler of Insulation PUR Foams. MATERIALS 2021; 14:ma14174781. [PMID: 34500871 PMCID: PMC8432465 DOI: 10.3390/ma14174781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022]
Abstract
A significant part of the work carried out so far in the field of production of biocomposite polyurethane foams (PUR) with the use of various types of lignocellulosic fillers mainly concerns rigid PUR foams with a closed-cell structure. In this work, the possibility of using waste wood particles (WP) from primary wood processing as a filler for PUR foams with open-cell structure was investigated. For this purpose, a wood particle fraction of 0.315–1.25 mm was added to the foam in concentrations of 0, 5, 10, 15 and 20%. The foaming course of the modified PUR foams (PUR-WP) was characterized on the basis of the duration of the process’ successive stages at the maximum foaming temperature. In order to explain the observed phenomena, a cellular structure was characterized using microscopic analysis such as SEM and light microscope. Computed tomography was also applied to determine the distribution of wood particles in PUR-WP materials. It was observed that the addition of WP to the open-cell PUR foam influences the kinetics of the foaming process of the PUR-WP composition and their morphology, density, compressive strength and thermal properties. The performed tests showed that the addition of WP at an the amount of 10% leads to the increase in the PUR foam’s compressive strength by 30% (parallel to foam’s growth direction) and reduce the thermal conductivity coefficient by 10%.
Collapse
|
9
|
Yang Y, Díaz Palencia JL, Wang N, Jiang Y, Wang DY. Nanocarbon-Based Flame Retardant Polymer Nanocomposites. Molecules 2021; 26:4670. [PMID: 34361823 PMCID: PMC8348979 DOI: 10.3390/molecules26154670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
In recent years, nanocarbon materials have attracted the interest of researchers due to their excellent properties. Nanocarbon-based flame retardant polymer composites have enhanced thermal stability and mechanical properties compared with traditional flame retardant composites. In this article, the unique structural features of nanocarbon-based materials and their use in flame retardant polymeric materials are initially introduced. Afterwards, the flame retardant mechanism of nanocarbon materials is described. The main discussions include material components such as graphene, carbon nanotubes, fullerene (in preparing resins), elastomers, plastics, foams, fabrics, and film-matrix materials. Furthermore, the flame retardant properties of carbon nanomaterials and their modified products are summarized. Carbon nanomaterials not only play the role of a flame retardant in composites, but also play an important role in many aspects such as mechanical reinforcement. Finally, the opportunities and challenges for future development of carbon nanomaterials in flame-retardant polymeric materials are briefly discussed.
Collapse
Affiliation(s)
- Yuan Yang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (Y.Y.); (Y.J.)
| | - José Luis Díaz Palencia
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Na Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (Y.Y.); (Y.J.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - Yan Jiang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (Y.Y.); (Y.J.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - De-Yi Wang
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, Spain;
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, 28906 Madrid, Spain
| |
Collapse
|
10
|
Synthesis of new ionic liquid-grafted metal-oxo nanoclusters – Design of nanostructured hybrid organic-inorganic polymer networks. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Coir Fibers Treated with Henna as a Potential Reinforcing Filler in the Synthesis of Polyurethane Composites. MATERIALS 2021; 14:ma14051128. [PMID: 33673702 PMCID: PMC7957822 DOI: 10.3390/ma14051128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
In this study, coir fibers were successfully modified with henna (derived from the Lawsonia inermis plant) using a high-energy ball-milling process. In the next step, such developed filler was used as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact of 1, 2, and 5 wt % of coir-fiber filler on structural and physico-mechanical properties was evaluated. Among all modified series of PUR composites, the greatest improvement in physico-mechanical performances was observed for PUR composites reinforced with 1 wt % of the coir-fiber filler. For example, on the addition of 1 wt % of coir-fiber filler, the compression strength was improved by 23%, while the flexural strength increased by 9%. Similar dependence was observed in the case of dynamic-mechanical properties—on the addition of 1 wt % of the filler, the value of glass transition temperature increased from 149 °C to 178 °C, while the value of storage modulus increased by ~80%. It was found that PUR composites reinforced with coir-fiber filler were characterized by better mechanical performances after the UV-aging.
Collapse
|