Wu CS, Wu DY, Wang SS. Preparation and Characterization of Polylactic Acid/Bamboo Fiber Composites.
ACS APPLIED BIO MATERIALS 2022;
5:1038-1046. [PMID:
35171562 DOI:
10.1021/acsabm.1c01082]
[Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of green and renewable materials has attracted increasing attention in recent years. Hence, biocomposite-based packaging materials have been investigated to replace petrochemical materials in several industries, such as the food packaging and electronics packaging industries. The tensile and thermal properties of biocomposite-based packaging materials composed of polylactic acid and plant fiber were mainly investigated in the current literature, but fewer studies on the improvement of water resistance and water vapor/oxygen barrier properties of composite materials were performed. Herein, we describe a composite film comprising TBFP [a mixture of bamboo fiber powder (BFP) and silica aerogel powder] that was combined with modified polylactic acid (MPLA) in a melt-mixing process. The structure, morphology, tensile strength, thermal properties, water absorption properties, water vapor/oxygen barrier effect, cytocompatibility, and biodegradability of the composites were characterized. MPLA and TBFP improved the properties of these composites. Fourier transform infrared and X-ray diffraction spectra have shown interfacial adhesion of MPLA/TBFP, resulting in a tighter structure. Hence, the MPLA/TBFP composite had higher elongation at failure (ε), tensile strength at failure (δ), Young's modulus (E), initial decomposition temperature at 5 wt % loss (T5%), residual yields, oxygen transmission rate, contact angles, lower thermal conductivity (k) values, water vapor transmission rate, and water absorption and biodegradability compared with PLA and PLA/BFP. It indicates that the MPLA/TBFP composites exhibited more favorable tensile strength, water resistance, and water vapor/oxygen barrier than the PLA and PLA/BFP composites. Cell growth analysis showed that the MPLA/TBFP and PLA/BFP composites own good cytocompatibility. Moreover, the biodegradability of the PLA/BFP and MPLA/TBFP composites increased with the filler (BFP or TBFP) concentration. Because of these improvements in their properties, composites can be used as packing materials in many perspectives.
Collapse