1
|
Li J, Peng B, Yu S, Zhao F, Han Q, Huang S, Jin F, Xing J. P(AAS-co-AMPS-Na)/SA/laponite composite hydrogel beads with excellent performance prepared by photopolymerization under green LED irradiation for adsorption of malachite green. Sep Purif Technol 2025; 354:128990. [DOI: 10.1016/j.seppur.2024.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Ruiz-Fresneda MA, González-Morales E, Gila-Vilchez C, Leon-Cecilla A, Merroun ML, Medina-Castillo AL, Lopez-Lopez MT. Clay-polymer hybrid hydrogels in the vanguard of technological innovations for bioremediation, metal biorecovery, and diverse applications. MATERIALS HORIZONS 2024; 11:5533-5549. [PMID: 39145624 DOI: 10.1039/d4mh00975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polymeric hydrogels are among the most studied materials due to their exceptional properties for many applications. In addition to organic and inorganic-based hydrogels, "hybrid hydrogels" have been gaining significant relevance in recent years due to their enhanced mechanical properties and a broader range of functionalities while maintaining good biocompatibility. In this sense, the addition of micro- and nanoscale clay particles seems promising for improving the physical, chemical, and biological properties of hydrogels. Nanoclays can contribute to the physical cross-linking of polymers, enhancing their mechanical strength and their swelling and biocompatibility properties. Nowadays, they are being investigated for their potential use in a wide range of applications, including medicine, industry, and environmental decontamination. The use of microorganisms for the decontamination of environments impacted by toxic compounds, known as bioremediation, represents one of the most promising approaches to address global pollution. The immobilization of microorganisms in polymeric hydrogel matrices is an attractive procedure that can offer several advantages, such as improving the preservation of cellular integrity, and facilitating cell separation, recovery, and transport. Cell immobilization also facilitates the biorecovery of critical materials from wastes within the framework of the circular economy. The present work aims to present an up-to-date overview on the different "hybrid hydrogels" used to date for bioremediation of toxic metals and recovery of critical materials, among other applications, highlighting possible drawbacks and gaps in research. This will provide the latest trends and advancements in the field and contribute to search for effective bioremediation strategies and critical materials recovery technologies.
Collapse
Affiliation(s)
| | | | - Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Mohamed L Merroun
- Universidad de Granada, Departamento de Microbiología, E-18071 Granada, Spain.
| | - Antonio L Medina-Castillo
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
- Universidad de Granada, Departamento de Química Analítica, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| |
Collapse
|
3
|
Huang X, Hu B, Zhang X, Fan P, Chen Z, Wang S. Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing. Expert Opin Drug Deliv 2024; 21:457-477. [PMID: 38467560 DOI: 10.1080/17425247.2024.2329641] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
4
|
Hu QD, Jiang HL, Lam KH, Hu ZP, Liu ZJ, Wang HY, Yang YY, Baigenzhenov O, Hosseini-Bandegharaei A, He FA. Polydopamine-modification of a magnetic composite constructed from citric acid-cross-linked cyclodextrin and graphene oxide for dye removal from waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27679-7. [PMID: 37271788 DOI: 10.1007/s11356-023-27679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
The effect of polydopamine (PDA) modification on aminated Fe3O4 nanoparticles (Fe3O4-NH2)/graphite oxide (GO)/β-cyclodextrin polymer cross-linked by citric acid (CDP-CA) composites were studied for the removal of a cationic dye (methylene blue, MB) and an anionic dye (Congo red, CR) from waters. The micro-structural and magnetic characterizations confirmed the successful preparation of Fe3O4-NH2/GO/CDP-CA and PDA/Fe3O4-NH2/GO/CDP-CA composites. The maximum MB and CR adsorption capacities of Fe3O4-NH2/GO/CDP-CA were 75 mg/g and 104 mg/g, respectively, while the corresponding amounts for PDA/Fe3O4-NH2/GO/CDP-CA composite were 195 mg/g and 64 mg/g, respectively. The dye sorption behaviors of these two composites were explained by their corresponding surface-charged properties according to the measured zeta potential results. Moreover, the high saturation magnetizations and the stable dye removal rate in the adsorption-desorption cycles indicated the good recyclability and reusability of the fabricated composites.
Collapse
Affiliation(s)
- Qing-Di Hu
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hong-Liu Jiang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330069, China
| | - Kwok-Ho Lam
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK
| | - Zhi-Peng Hu
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330069, China
| | - Zhi-Jie Liu
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hua-Ying Wang
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Yong-Yu Yang
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | | | | | - Fu-An He
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| |
Collapse
|
5
|
Adsorptive removal of cationic dye by synthesized sustainable xanthan gum-g p(AMPS-co-AAm) hydrogel from aqueous media: Optimization by RSM-CCD model. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Parvini E, Hajalilou A, Lopes PA, Tiago MSM, de Almeida AT, Tavakoli M. Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics. SOFT MATTER 2022; 18:8486-8503. [PMID: 36321471 DOI: 10.1039/d2sm01103d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft, conductive, and stretchable hydrogels offer a broad variety of applications, including skin-interfacing electrodes, biomonitoring patches, and electrostimulation. Despite rapid developments over the last decades, a combination of good electrical and mechanical properties, low-cost fabrication, and biocompatibility is yet to be demonstrated. Also, the current methods for deposition and patterning of these hydrogels are manual, and there is a need toward autonomous and digital fabrication techniques. In this work, we demonstrate a novel Gallium (Ga) embedded sodium-alginate-polyacrylamide-LAPONITE® (Ga-SA-PAAM-La) hydrogel, that is ultra-stretchable (Maximum strain tolerance of∼985%), tough (toughness ∼30 kJ m-3), bio-adhesive (adhesion energy ∼216 J m-2), conductive, and digitally printable. Ga nanoparticles are used as radical initiators. By adjusting the sonication parameters, we control the solution viscosity and curing time, thus allowing us to prepare pre-polymers with the desired properties for casting, or digital printing. These hydrogels benefit from a triple-network structure due to the role of Ga droplets as crosslinkers besides BIS (N,N'-methylene-bis-acrylamide) and LAPONITE®, thus resulting in tough composite hydrogels. The inclusion of LAPONITE® into the hydrogel network improved its electrical conductivity, adhesion, digital printability, and its mechanical properties, (>6× compared to the same hydrogel without LAPONITE®). As electrodes in the electrocardiogram, the signal-to-noise ratio was surprisingly higher than the medical-grade Ag/AgCl electrodes, which are applied for monitoring muscles, heart, respiration, and body joint angle through EMG, ECG, and bioimpedance measurements. The results obtained prove that such digitally printed conductive and tough hydrogels can be used as potential electrodes and sensors in practical applications in the next generation of printed wearable computing devices.
Collapse
Affiliation(s)
- Elahe Parvini
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Abdollah Hajalilou
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Miguel Soares Maranha Tiago
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Anibal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| |
Collapse
|