1
|
Humbe SS, Joshi GM, Deshmukh RR, Kaleemulla S. Anomalous properties of plasma treated hexagonal Boron Nitride dispersed polymer nano blends. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Mohamed MG, Hu HY, Madhu M, Ejaz M, Sharma SU, Tseng WL, Samy MM, Huang CW, Lee JT, Kuo SW. Construction of Ultrastable Conjugated Microporous Polymers Containing Thiophene and Fluorene for Metal Ion Sensing and Energy Storage. MICROMACHINES 2022; 13:mi13091466. [PMID: 36144089 PMCID: PMC9505267 DOI: 10.3390/mi13091466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2023]
Abstract
In this study, we have used the one-pot polycondensation method to prepare novel 2D conjugated microporous polymers (Th-F-CMP) containing thiophene (Th) and fluorene (Fl) moieties through the Suzuki cross-coupling reaction. The thermogravimetric analysis (TGA) data revealed that Th-F-CMP (Td10 = 418 °C, char yield: 53 wt%). Based on BET analyses, the Th-F-CMP sample displayed a BET specific surface area of 30 m2 g-1, and the pore size was 2.61 nm. Next, to show the effectiveness of our study, we utilized Th-F-CMP as a fluorescence probe for the selective detection of Fe3+ ions at neutral pH with a linear range from 2.0 to 25.0 nM (R2 = 0.9349). Furthermore, the electrochemical experimental studies showed that the Th-F-CMP framework had a superior specific capacity of 84.7 F g-1 at a current density of 0.5 A g-1 and outstanding capacitance retention (88%) over 2000 cycles.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Huan-Yu Hu
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Mohsin Ejaz
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Santosh U Sharma
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Cheng-Wei Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Jyh-Tsung Lee
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Influence of organic Na+-MMT on the dielectric and energy storage properties of maleic anhydride-functionalized polypropylene nanocomposites. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|