1
|
Yamada T, Arai K, Kikuchi R, Okamoto S. Deuteration of Indole Compounds: Synthesis of Deuterated Auxins, Indole-3-acetic Acid-d5 and Indole-3-butyric Acid-d5. ACS OMEGA 2021; 6:19956-19963. [PMID: 34368582 PMCID: PMC8340417 DOI: 10.1021/acsomega.1c02940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/08/2021] [Indexed: 05/15/2023]
Abstract
In this study, we describe a practical and facile synthesis of deuterium-labeled indoles via acid-catalyzed hydrogen-deuterium exchange. 3-Substituted indoles were efficiently deuterated through treatment with 20 wt % D2SO4 in CD3OD at 60-90 °C. A deuterium incorporation reaction of 3-unsubstituted indoles was accomplished through treatment with CD3CO2D at 150 °C. The in situ preparation of a 20 wt % D2SO4/CH3OD/D2O solution enabled a large-scale and low-cost synthesis of auxins, indole-3-acetic acid-d5 and indole-3-butyric acid-d5.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department
of Materials and Life Chemistry, Kanagawa
University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kazuki Arai
- Department
of Materials and Life Chemistry, Kanagawa
University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Rie Kikuchi
- Faculty
of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Sentaro Okamoto
- Department
of Materials and Life Chemistry, Kanagawa
University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
2
|
Vallakati R, Plotnikov AT, Altman RA. Synthesis of 2-D- L-Tryptophan by Sequential Ir-Catalyzed Reactions. Tetrahedron 2019; 75:2261-2264. [PMID: 31130755 PMCID: PMC6532784 DOI: 10.1016/j.tet.2019.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a practical synthesis of 2-D-L-tryptophan via sequential Ir-catalyzed C-H borylation, and Ir-catalyzed C-2-deborylative deuteration steps. In this synthetic sequence, deprotection of the Boc and methyl ester groups proved challenging, due to replacement of deuterium with hydrogen. However, mild deprotection conditions were developed to avoid this D/H scrambling. Further, 2-D-L-Tryptophan is stable in many buffers used for biological studies.
Collapse
Affiliation(s)
- Ravikrishna Vallakati
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Abel T Plotnikov
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan A Altman
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Pająk M, Pałka K, Winnicka E, Kańska M. The chemo- enzymatic synthesis of labeled l-amino acids and some of their derivatives. J Radioanal Nucl Chem 2018; 317:643-666. [PMID: 30100649 PMCID: PMC6061101 DOI: 10.1007/s10967-018-5932-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/14/2023]
Abstract
This review compiles the combined chemical and enzymatic synthesis of aromatic l-amino acids (l-phenylalanine, l-tyrosine, l-DOPA, l-tryptophan, and their derivatives and precursors) specifically labeled with carbon and hydrogen isotopes, which were elaborated in our research group by the past 20 years. These compounds could be then employed to characterize the mechanisms of enzymatic reactions via kinetic and solvent isotope effects methods.
Collapse
Affiliation(s)
- Małgorzata Pająk
- Department of Chemistry, Warsaw University, Pasteur 1 Str., 02-093 Warsaw, Poland
| | - Katarzyna Pałka
- Department of Chemistry, Warsaw University, Pasteur 1 Str., 02-093 Warsaw, Poland
| | - Elżbieta Winnicka
- Department of Chemistry, Warsaw University, Pasteur 1 Str., 02-093 Warsaw, Poland
| | - Marianna Kańska
- Department of Biochemistry, 2nd Faculty of Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Av., 02-091 Warsaw, Poland
| |
Collapse
|
4
|
Zhang Y, Zou Y, Brock NL, Huang T, Lan Y, Wang X, Deng Z, Tang Y, Lin S. Characterization of 2-Oxindole Forming Heme Enzyme MarE, Expanding the Functional Diversity of the Tryptophan Dioxygenase Superfamily. J Am Chem Soc 2017; 139:11887-11894. [PMID: 28809552 DOI: 10.1021/jacs.7b05517] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
3-Substituted 2-oxindoles are important structural motifs found in many biologically active natural products and pharmaceutical lead compounds. Here, we report an enzymatic formation of the 3-substituted 2-oxindoles catalyzed by MarE in the maremycin biosynthetic pathway in Streptomyces sp. B9173. MarE is a homologue of FeII/heme-dependent tryptophan 2,3-dioxygenases (TDOs). Typical TDOs usually catalyze the insertion of two oxygen atoms from O2 into an indole ring to generate N-formylkynurenine (NFK)-like products. In contrast, MarE catalyzes the insertion of a single oxygen atom from O2 into an indole ring, to probably generate an epoxyindole intermediate that undergoes an unprecedented 2,3-hydride migration to form 2-oxindole structure. MarE shows substrate robustness to catalyze the conversion of a series of 3-substituted indoles into their corresponding 3-substituted 2-oxindoles. Although containing most key amino acid residues conserved in well-known TDO homologues, MarE falls into a separate new subgroup in the phylogenetic tree. The characterization of MarE and its homologue enriches the functional diversities of TDO superfamily and provides a new strategy for discovering novel natural products containing 3-substituted 2-oxindole pharmacophores by genome mining.
Collapse
Affiliation(s)
- Yuyang Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Zou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles , 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Nelson L Brock
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yingxia Lan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles , 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Giles R, Lee A, Jung E, Kang A, Jung KW. Hydrogen-deuterium exchange of aromatic amines and amides using deuterated trifluoroacetic acid. Tetrahedron Lett 2015; 56:747-749. [PMID: 25641994 PMCID: PMC4310004 DOI: 10.1016/j.tetlet.2014.12.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The H-D exchange of aromatic amines and amides, including pharmaceutically relevant compounds such as acetaminophen and diclofenac, was investigated using CF3COOD as both the sole reaction solvent and source of deuterium label. The described method is amenable to efficient deuterium incorporation for a wide variety of substrates possessing both electron-donating and electron-withdrawing substituents. Best results were seen with less basic anilines and highly activated acetanilides, reflecting the likelihood of different mechanistic pathways.
Collapse
Affiliation(s)
- Richard Giles
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Amy Lee
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Erica Jung
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Aaron Kang
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Kyung Woon Jung
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
6
|
Abstract
Nine isotopomers of tryptamine and its halogen derivatives, labeled with deuterium, tritium in side chain, i.e., [(1R)-2H]-, [(1R)-3H]-, 5-F-[(1R)-2H]-, 5-F-[(1R)-3H]-, 5-Br-[(1R)-2H]-, double labeled [(1R)-2H/3H]-, 5-F-[(1R)-2H/3H]-, and ring labeled [4-2H]-, and [5-2H]-tryptamine, were obtained by enzymatic decarboxylation of l-Trp and its appropriate derivatives in deuteriated or tritiated media, respectively. Intermediates: [5′-2H]-l-Trp used for further decarboxylation was synthesized by enzymatic coupling of [5-2H]-indole with S-methyl-l-cysteine, and [4′-2H]-l-Trp was obtained by isotope exchange 1H/2H of the authentic l-Trp dissolved in heavy water induced by UV-irradiation. Doubly labeled [(1R)-2H/3H]- and 5-F-[(1R)-2H/3H]-tryptamine were obtain by decarboxylation of l-Trp or [5′-F]-l-Trp carried out in 2H3HO incubation medium.
Collapse
|
7
|
Winnicka E, Dabrowski P, Winek T, Kanska M. The kinetic and solvent deuterium isotope effects in the 4- and 5-positions of the indole ring on the enzymatic decomposition of L-tryptophan. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2010; 46:225-232. [PMID: 20582791 DOI: 10.1080/10256016.2010.488808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The kinetic and solvent deuterium isotope effects in the 4- and 5-positions of the indole ring on the enzymatic decomposition of l-tryptophan catalysed by the enzyme TPase (EC. 4.1.99.1) were determined. The isotope effects were investigated by the non-competitive method using [4'-(2)H]-l-tryptophan, which was enriched in deuterium in 70% in the 4-position. The numerical values of isotope effects for 100% enrichment in deuterated label in that position were calculated by approximation. Those same isotope effects were determined for [5'-(2)H]-l-tryptophan fully deuteriated in the 5' -position.
Collapse
|