1
|
Wang J, Ahmed R, Zeng Y, Fu K, Soto F, Sinclair B, Soh HT, Demirci U. Engineering the Interaction Dynamics between Nano-Topographical Immunocyte-Templated Micromotors across Scales from Ions to Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005185. [PMID: 33174334 DOI: 10.1002/smll.202005185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Manufacturing mobile artificial micromotors with structural design factors, such as morphology nanoroughness and surface chemistry, can improve the capture efficiency through enhancing contact interactions with their surrounding targets. Understanding the interplay of such parameters targeting high locomotion performance and high capture efficiency at the same time is of paramount importance, yet, has so far been overlooked. Here, an immunocyte-templated nano-topographical micromotor is engineered and their interactions with various targets across multiple scales, from ions to cells are investigated. The macrophage templated nanorough micromotor demonstrates significantly increased surface interactions and significantly improved and highly efficient removal of targets from complex aqueous solutions, including in plasma and diluted blood, when compared to smooth synthetic material templated micromotors with the same size and surface chemistry. These results suggest that the surface nanoroughness of the micromotors for the locomotion performance and interactions with the multiscale targets should be considered simultaneously, for they are highly interconnected in design considerations impacting applications across scales.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-4034, USA
| | - Kaiyu Fu
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA, 94305-4034, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bob Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-4034, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA, 94305-4034, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
2
|
Hernández-Valdés D, Blanco-González A, García-Fleitas A, Rodríguez-Riera Z, Meola G, Alberto R, Jáuregui-Haza U. Insight into the structure and stability of Tc and Re DMSA complexes: A computational study. J Mol Graph Model 2016; 71:167-175. [PMID: 27923180 DOI: 10.1016/j.jmgm.2016.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 11/18/2022]
Abstract
Meso-2,3-dimercaptosuccinic acid (DMSA) is used in nuclear medicine as ligand for preparation of diagnostic and therapy radiopharmaceuticals. DMSA has been the subject of numerous investigations during the past three decades and new and significant information of the chemistry and pharmacology of DMSA complexes have emerged. In comparison to other ligands, the structure of some DMSA complexes is unclear up today. The structures and applications of DMSA complexes are strictly dependent on the chemical conditions of their preparation, especially pH and components ratio. A computational study of M-DMSA (M=Tc, Re) complexes has been performed using density functional theory. Different isomers for M(V) and M(III) complexes were studied. The pH influence over ligand structures was taken into account and the solvent effect was evaluated using an implicit solvation model. The fully optimized complex syn-endo Re(V)-DMSA shows a geometry similar to the X-ray data and was used to validate the methodology. Moreover, new alternative structures for the renal agent 99mTc(III)-DMSA were proposed and computationally studied. For two complex structures, a larger stability respect to that proposed in the literature was obtained. Furthermore, Tc(V)-DMSA complexes are more stable than Tc(III)-DMSA proposed structures. In general, Re complexes are more stable than the corresponding Tc ones.
Collapse
Affiliation(s)
- Daniel Hernández-Valdés
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Avenida Salvador Allende No 1110 entre Infanta y Avenida Rancho Boyeros, Quinta de los Molinos, A.P. 6163, La Habana, Cuba; Department of Chemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Alejandro Blanco-González
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Avenida Salvador Allende No 1110 entre Infanta y Avenida Rancho Boyeros, Quinta de los Molinos, A.P. 6163, La Habana, Cuba
| | - Ariel García-Fleitas
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Avenida Salvador Allende No 1110 entre Infanta y Avenida Rancho Boyeros, Quinta de los Molinos, A.P. 6163, La Habana, Cuba
| | - Zalua Rodríguez-Riera
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Avenida Salvador Allende No 1110 entre Infanta y Avenida Rancho Boyeros, Quinta de los Molinos, A.P. 6163, La Habana, Cuba
| | - Giuseppe Meola
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Ulises Jáuregui-Haza
- Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, Avenida Salvador Allende No 1110 entre Infanta y Avenida Rancho Boyeros, Quinta de los Molinos, A.P. 6163, La Habana, Cuba.
| |
Collapse
|
3
|
Yadav A, Mathur R, Samim M, Lomash V, Kushwaha P, Pathak U, Babbar AK, Flora SJS, Mishra AK, Kaushik MP. Nanoencapsulation of DMSA monoester for better therapeutic efficacy of the chelating agent against arsenic toxicity. Nanomedicine (Lond) 2014; 9:465-81. [PMID: 24910877 DOI: 10.2217/nnm.13.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS Exposure to toxic metals remains a widespread occupational and environmental problem in world. Chelation therapy is a mainstream treatment used to treat heavy metal poisoning. This paper describes the synthesis, characterization and therapeutic evaluation of monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA)-encapsulated polymeric nanoparticles as a detoxifying agent for arsenic poisoning. MATERIALS & METHODS Polymeric nanoparticles entrapping the DMSA monoester, which can evade the reticulo-endothelial system and have a long circulation time in the blood, were prepared. Particle characterization was carried out by transmission electron microscopy and dynamic light scattering. An in vivo study was conducted to investigate the therapeutic efficacy of MiADMSA-encapsulated polymeric nanoparticles (nano- MiADMSA; 50 mg/kg orally for 5 days) and comparison drawn with bulk MiADMSA. Swiss albino mice exposed to sodium arsenite for 4 weeks were treated for 5 days to evaluate alterations in blood, brain, kidney and liver oxidative stress variables. The study also evaluated the histopathological changes in tissues and the chelating potential of the nanoformulation. RESULTS Our results show that nano-MiADMSA have a narrow size distribution in the 50-nm range. We observed an enhanced chelating potential of nano-MiADMSA compared with bulk MiADMSA as evident in the reversal of biochemical changes indicative of oxidative stress and efficient removal of arsenic from the blood and tissues. Histopathological changes and urinary 8-OHdG levels also prove better therapeutic efficacy of the novel formulation for arsenic toxicity. CONCLUSION The results from our study show better therapeutic efficacy of nano-MiADMSA in removing arsenic burden from the brain and liver.
Collapse
|
4
|
Staník R, Světlík J, Benkovský I. DMSA and its complexes with radioisotopes: review. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1743-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Importance of DMSA stability, its consequence for Sn(DMSA)2 complex formation and relevance to 99mTc-DMSA radipharmacs preparation. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-1181-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|