1
|
Hashemi S, Shirmardi SP, Hosntalab M, Sardari D, Saniei E. Internal absorbed dose calculation in body organs due to injection of Rhenium-188 labeled to Mu-9 antibody. Appl Radiat Isot 2024; 207:111235. [PMID: 38430824 DOI: 10.1016/j.apradiso.2024.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
The use of radiopharmaceuticals has gained a special place in the diagnosis and treatment of cancers and evaluation of the function of different organs of the body. In this study, the absorbed dose distribution of organs after injection of 188Re-Mu-9 has been investigated using MIRD method and MCNP-4C simulation code. The 188Re-Mu-9 labeled was injected the mouse body and the amount of 188Re-labeled accumulation was evaluated after 1, 4 and 2 4 h. Having a map of the distribution of radiopharmaceutical activity in the animal body, it is possible to convert it into a human model to obtain the internal dose received by 188Re-Mu-9 injection using the MIRD calculation method and the MCNP simulation code. According to the results of the study, the animal/human model can be acceptable method for dose estimation of antibody-based radiopharmaceuticals.
Collapse
Affiliation(s)
- S Hashemi
- Medical Radiation Engineering Department, Science and Research Branch, Islamic Azad University (IAU), P.O. Box: 14515-775, Tehran, Iran
| | - S P Shirmardi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O.Box: 14395-836, Tehran, Iran.
| | - M Hosntalab
- Medical Radiation Engineering Department, Science and Research Branch, Islamic Azad University (IAU), P.O. Box: 14515-775, Tehran, Iran
| | - D Sardari
- Medical Radiation Engineering Department, Science and Research Branch, Islamic Azad University (IAU), P.O. Box: 14515-775, Tehran, Iran
| | - E Saniei
- Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Wongso H. Natural product-based Radiopharmaceuticals:Focus on curcumin and its analogs, flavonoids, and marine peptides. J Pharm Anal 2021; 12:380-393. [PMID: 35811617 PMCID: PMC9257450 DOI: 10.1016/j.jpha.2021.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products provide a bountiful supply of pharmacologically relevant precursors for the development of various drug-related molecules, including radiopharmaceuticals. However, current knowledge regarding the importance of natural products in developing new radiopharmaceuticals remains limited. To date, several radionuclides, including gallium-68, technetium-99m, fluorine-18, iodine-131, and iodine-125, have been extensively studied for the synthesis of diagnostic and therapeutic radiopharmaceuticals. The availability of various radiolabeling methods allows the incorporation of these radionuclides into bioactive molecules in a practical and efficient manner. Of the radiolabeling methods, direct radioiodination, radiometal complexation, and halogenation are generally suitable for natural products owing to their simplicity and robustness. This review highlights the pharmacological benefits of curcumin and its analogs, flavonoids, and marine peptides in treating human pathologies and provides a perspective on the potential use of these bioactive compounds as molecular templates for the design and development of new radiopharmaceuticals. Additionally, this review provides insights into the current strategies for labeling natural products with various radionuclides using either direct or indirect methods. Potential use of natural products for the development of diagnostic and therapeutic radiopharmaceuticals. Profile of potential natural products as molecular templates for the synthesis of new radiopharmaceuticals: Focus on curcumin and its closely related substances, flavonoids, and marine peptides. Radiolabeling strategies, challenges, and examples of natural product-based radiopharmaceuticals under investigation.
Collapse
|
3
|
De K, Mukherjee D, Sinha S, Ganguly S. HYNIC and DOMA conjugated radiolabeled bombesin analogs as receptor-targeted probes for scintigraphic detection of breast tumor. EJNMMI Res 2019; 9:25. [PMID: 30887136 PMCID: PMC6423188 DOI: 10.1186/s13550-019-0493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Background Among the many peptide receptor systems, gastrin-releasing-peptide (GRP) receptors, the mammalian equivalent of bombesin (BN) receptors, are potential targets for diagnosis and therapy of breast tumors due to their overexpression in various frequently occurring human cancers. The aim of this study was to synthesize and comparative evaluation of 99mTc-labeled new BN peptide analogs. Four new BN analogs, HYNIC-Asp[PheNle]BN(7-14)NH2, BN1; HYNIC-Pro-Asp[TyrMet]BN(7-14)NH2, BN2; HYNIC-Asp-Asn[Lys-CHAla-Nle]BN(7-14)NH2, BN3; and DOMA-GABA[Pro-Tyr-Nle]BN(7-14)NH2, BN4 were synthesized and biologically evaluated for targeted imaging of GRP receptor-positive breast-tumors. Methods Solid-phase synthesis using Fmoc-chemistry was adopted for the synthesis of peptides. BN1–BN4 analogs were better over the standard Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 (BNS). Lipophilicity, serum stability, internalization, and binding affinity studies were carried out using 99mTc-labeled analogs. Biodistribution and imaging analyses were performed on MDA-MB-231 cell-induced tumor-bearing mice. BN-analogs induced angiogenesis; tumor formation and GRP-receptor-expression were confirmed by histology and immunohistochemistry analyses of tumor sections and important tissue sections. Results All the analogs displayed ≥ 97% purity after the HPLC purification. BN-peptide-conjugates exhibited high serum stability and significant binding affinity to GRP-positive tumor; rapid internalization/externalization in/from MDA-MB-231 cells were noticed for the BN analogs. BN4 and BN3 exhibited higher binding affinity, stability than BN1 and BN2. Highly specific in vivo uptakes to the tumor were clearly visualized by scintigraphy; rapid excretion from non-target tissues via kidneys suggests a higher tumor-to-background ratio. BN4, among all the analogs, stimulates the expression of angiogenic markers to a maximum. Conclusion Considering its most improved pharmacological characteristics, BN4 is thus considered as most promising probes for early non-invasive diagnosis of GRP receptor-positive breast tumors. Electronic supplementary material The online version of this article (10.1186/s13550-019-0493-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, West Bengal, 700032, India.
| | - Dibyanti Mukherjee
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, West Bengal, 700032, India
| | - Samarendu Sinha
- Regional Radiation Medicine Center, Thakurpukur Cancer Research Center and Welfare Home Campus, Kolkata, West Bengal, 700 060, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Research Center and Welfare Home Campus, Kolkata, West Bengal, 700 060, India
| |
Collapse
|
4
|
Stability evaluation of Tc-99m radiolabeled GRPr antagonist with amino acid chelators. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Rezazadeh F, Sadeghzadeh N. Tumor targeting with 99m Tc radiolabeled peptides: Clinical application and recent development. Chem Biol Drug Des 2018; 93:205-221. [PMID: 30299570 DOI: 10.1111/cbdd.13413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/19/2018] [Accepted: 09/23/2018] [Indexed: 01/16/2023]
Abstract
Targeting overexpressed receptors on the cancer cells with radiolabeled peptides has become very important in nuclear oncology in the recent years. Peptides are small and have easy preparation and easy radiolabeling protocol with no side-effect and toxicity. These properties made them a valuable tool for tumor targeting. Based on the successful imaging of neuroendocrine tumors with 111 In-octreotide, other receptor-targeting peptides such as bombesin (BBN), cholecystokinin/gastrin analogues, neurotensin analogues, glucagon-like peptide-1, and RGD peptides are currently under development or undergoing clinical trials. The most frequently used radionuclides for tumor imaging are 99m Tc and 111 In for single-photon emission computed tomography and 68 Ga and 18 F for positron emission tomography imaging. This review presents some of the 99m Tc-labeled peptides, with regard to their potential for radionuclide imaging of tumors in clinical and preclinical application.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Evaluation of new 99mTc-labeled HYNIC-bombesin analogue for prostate cancer imaging. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5819-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
De K, Banerjee I, Sinha S, Ganguly S. Synthesis and exploration of novel radiolabeled bombesin peptides for targeting receptor positive tumor. Peptides 2017; 89:17-34. [PMID: 28088445 DOI: 10.1016/j.peptides.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022]
Abstract
Increasing evidence of peptide receptor overexpression in various cancer cells, warrant the development of receptor specific radiolabeled peptides for molecular imaging and therapy in nuclear medicine. Gastrin-releasing-peptide (GRP) receptor, are overexpressed in a variety of human cancer cells. The present study report the synthesis and biological evaluation of new bombesin (BBN) analogs, HYNIC-Asp-[Phe13]BBN(7-13)-NH-CH2-CH2-CH3:BA1, HYNIC-Pro-[Tyr13Met14]BBN(7-14)NH2:BA2 as prospective tumor imaging agent with compare to BBN(7-14)NH2:BS as standard. The pharmacophores were radiolabeled in high yields with 99mTc, characterized for their stability in serum and saline, cysteine/histidine and were found to be substantially stable. Internalization/externalization and receptor binding studies were assessed using MDA-MB-231 cells and showed high receptor binding-affinity and favourable internalization. Fluorescence studies revealed that BA1 changed the morphology of the cells and could localize in the nucleus more effectively than BA2/BS. Cell-viability studies displayed substantial antagonistic and nuclear-internalization effect of BA1. BA1 also exhibited antiproliferative effect on MDA-MB-231 cell by inducing apoptosis. In vivo behaviour of the radiopeptides was evaluated in GRP receptor positive tumor bearing mice. The 99mTc-BA1/99mTc-BA2 demonstrated rapid blood/urinary clearance through the renal pathway and comparatively more significant tumor uptake image and favourable tumor-to-non-target ratios provided by 99mTc-BA1. The specificity of the in vivo uptake was confirmed by co-injection with BS. Moreover, 99mTc-BA1 provided a much clearer tumor image in scintigraphic studies than others. Thus the combination of favourable in vitro and in vivo properties renders BA1 as more potential antagonist bombesin-peptide for targeting GRP-receptor positive tumor. These properties are encouraging to carry out further experiments for non-invasive receptor targeting potential diagnostinc and therapeutic agent for tumors.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, West Bengal, India.
| | - Indranil Banerjee
- Infectious Diseases and Immunology Division (Nuclear Medicine Laboratory), CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, West Bengal, India
| | - Samarendu Sinha
- Regional Radiation Medicine Center, Thakurpukur Cancer Center and Welfare Home Campus, Kolkata, 700 063, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Center and Welfare Home Campus, Kolkata, 700 063, India
| |
Collapse
|
8
|
Akbar MU, Ahmad MR, Shaheen A, Mushtaq S. A review on evaluation of technetium-99m labeled radiopharmaceuticals. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5019-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Comparison of estimated human effective dose of 67Ga- and 99mTc-labeled bombesin based on distribution data in mice. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-3995-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Erfani M, Shamsaei M, Mohammadbaghery F, Shirmardi SP. Synthesis and evaluation of a 99mTc-labeled tubulin-binding agent for tumor imaging. J Labelled Comp Radiopharm 2014; 57:419-24. [PMID: 24737145 DOI: 10.1002/jlcr.3200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 11/11/2022]
Abstract
Cholchicine and its derivatives are very potent tubulin-binding compounds and can be used as a potential tumor targeting agents. In this study, colchicine was labeled with (99m) Tc via hydrazinonicotinic acid (HYNIC) and was investigated further. HYNIC/cholchicine was synthesized and labeling with (99m)Tc was performed at 95 °C for 15 min and radiochemical analysis included HPLC method. The stability of radiconjugate was checked in the presence of human serum at 37 °C up to 24 h. Biodistribution was studied in breast tumor-bearing mice. Labeling yield of 95.8 ± 0.54% was obtained corresponding to a specific activity of 54 MBq/µmol. Radioconjugate showed good stability in the presence of human serum. Biodistribution studies in tumor-bearing mice showed that (99m) Tc/HYNIC/colchicine conjugate accumulated in tumor with good uptake (3.17 ± 0.14% g/g at 1 h post-injection). The radioconjugate was cleared fast from normal organs and showed clearance through urinary and hepatobiliary systems with accumulation of activity in kidneys and intestine. This radioconjugate may be useful to assess the presence of tumor by imaging.
Collapse
Affiliation(s)
- Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Tehran, Iran
| | | | | | | |
Collapse
|
11
|
Erfani M, Shafiei M. Preparation of 99mTc-TRODAT-1 with high labeling yield in boiling water bath: a new formulation. Nucl Med Biol 2014; 41:317-21. [PMID: 24607434 DOI: 10.1016/j.nucmedbio.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/05/2014] [Indexed: 12/22/2022]
Abstract
A new formulation for preparation of (99m)Tc-labeled tropane derivative, (99m)Tc-TRODAT-1, which is useful as a potential CNS dopamine transporter imaging agent, was evaluated and characterized. Preparation of (99m)Tc-TRODAT-1 was attained previously by a formulation in which vial has to be autoclaved at 121 °C for 30 min. It is highly desirable to further improve the preparation method by developing a simplified one vial formulation which will be labeled in boiling water bath (95 °C) for 15 min and a high labeling yield will be achieved. A formulation contained 10 μg of TRODAT-1, 20 μg tricine, 40 μg SnCl2 and 20mg manitol was prepared. Labeling was performed at 95 °C for 15 min and radiochemical analysis involved ITLC and HPLC methods. The stability of radioconjugate was checked in the presence of human serum at 37 °C up to 24h. (99m)Tc-TRODAT-1 was prepared with a radiochemical purity of more than 95% and specific activity of 64.3 MBq/nmol. Biodistribution studies of this new formulation in rats revealed similar regional brain distribution as compared with those obtained with the previous preparation in which brain uptake was high in striatum and striatum to cerebellum ratio was high. Requiring no autoclave facility for labeling, this new formulation will significantly improve the using feasibility of this radiopharmaceutical in clinic.
Collapse
Affiliation(s)
- Mostafa Erfani
- Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 11365-3486, end of Karegar Ave., Tehran, Iran.
| | - Mohammad Shafiei
- Nuclear Science Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 11365-3486, end of Karegar Ave., Tehran, Iran
| |
Collapse
|
12
|
Ahrabi NZ, Erfani M, Parivar K, Beiki D, Jalilian AR. Preparation and evaluation of a new neurotensin analog labeled with 99mTc for targeted imaging of neurotensin receptor positive tumors. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2795-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Yurt Lambrecht F, Durkan K, Özgür A, Gündüz C, Avcı ÇB, Susluer SY. In vitroevaluation of99mTc-EDDA/tricine-HYNIC-Q-Litorin in gastrin-releasing peptide receptor positive tumor cell lines. J Drug Target 2013; 21:383-8. [DOI: 10.3109/1061186x.2012.757772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Sadeghzadeh N, Ahmadzadeh M, Erfani M. Evaluation of a new radiolabeled bombesin derivative with 99mTc as potential targeted tumor imaging agent. J Radioanal Nucl Chem 2013. [PMID: 26224936 PMCID: PMC4513902 DOI: 10.1007/s10967-013-2464-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gastrin-releasing peptide (GRP) receptors are over-expressed in various human tumor including breast and prostate which can be targeted with bombesin for diagnosis and targeted therapy. High abdominal accumulation and the poor in vivo stability of radiolabeled bombesin analogues may represent a limitation for diagnostic imaging and targeted therapy. In this study a new bombesin derivative was labeled with 99mTc via HYNIC and tricine as a coligand and investigated further. The peptide HYNIC conjugate was synthesized on a solid phase using Fmoc strategy. Labeling with 99mTc was performed at 100 °C for 10 min and radiochemical analysis involved ITLC and HPLC methods. The stability of radiopeptide was checked in the presence of human serum at 37 °C up to 24 h. Internalization was studied with the human GRP receptor cell line PC-3. The Biodistribution was studied in mice. Labeling yield of >98 % was obtained to correspond a specific activity of ~80.9 GBq/μmol. Radioconjugate internalization into PC-3 cells was high and specific (15.6 ± 1.9 % at 4 h). A high and specific uptake in GRP-receptor-positive organs such as mouse tumor and pancreas (2.11 ± 0.18 and 1.78 ± 0.09 % ID/g after 1 h respectively) was also determined.
Collapse
Affiliation(s)
- N Sadeghzadeh
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - M Ahmadzadeh
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - M Erfani
- Nuclear Science Research School, Nuclear Science & Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, Tehran, Iran
| |
Collapse
|