1
|
Ünak P, Yasakçı V, Tutun E, Karatay KB, Walczak R, Wawrowicz K, Żelechowska-Matysiak K, Majkowska-Pilip A, Bilewicz A. Multimodal Radiobioconjugates of Magnetic Nanoparticles Labeled with 44Sc and 47Sc for Theranostic Application. Pharmaceutics 2023; 15:pharmaceutics15030850. [PMID: 36986710 PMCID: PMC10053001 DOI: 10.3390/pharmaceutics15030850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
This study was performed to synthesize multimodal radiopharmaceutical designed for the diagnosis and treatment of prostate cancer. To achieve this goal, superparamagnetic iron oxide (SPIO) nanoparticles were used as a platform for targeting molecule (PSMA-617) and for complexation of two scandium radionuclides, 44Sc for PET imaging and 47Sc for radionuclide therapy. TEM and XPS images showed that the Fe3O4 NPs have a uniform cubic shape and a size from 38 to 50 nm. The Fe3O4 core are surrounded by SiO2 and an organic layer. The saturation magnetization of the SPION core was 60 emu/g. However, coating the SPIONs with silica and polyglycerol reduces the magnetization significantly. The obtained bioconjugates were labeled with 44Sc and 47Sc, with a yield higher than 97%. The radiobioconjugate exhibited high affinity and cytotoxicity toward the human prostate cancer LNCaP (PSMA+) cell line, much higher than for PC-3 (PSMA-) cells. High cytotoxicity of the radiobioconjugate was confirmed by radiotoxicity studies on LNCaP 3D spheroids. In addition, the magnetic properties of the radiobioconjugate should allow for its use in guide drug delivery driven by magnetic field gradient.
Collapse
Affiliation(s)
- Perihan Ünak
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir 35100, Turkey
- Correspondence: (P.Ü.); (A.B.)
| | - Volkan Yasakçı
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir 35100, Turkey
| | - Elif Tutun
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir 35100, Turkey
| | - K. Buşra Karatay
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir 35100, Turkey
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Kamil Wawrowicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
- Correspondence: (P.Ü.); (A.B.)
| |
Collapse
|
2
|
Deng B, Wang Y, Wu Y, Yin W, Lu J, Ye J. Raman Nanotags-Guided Intraoperative Sentinel Lymph Nodes Precise Location with Minimal Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102405. [PMID: 34741446 PMCID: PMC8805599 DOI: 10.1002/advs.202102405] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The accurate positioning of sentinel lymph node (SLN) by tracers during surgery is an important prerequisite for SLN biopsy. A major problem of traditional tracers in SLN biopsy is the short surgery window due to the fast diffusion of tracers through the lymphatics, resulting in a misjudgment between SLN and second echelon lymph node (2nd LN). Here, a nontoxic Raman nanoparticle tracer, termed gap-enhanced Raman tags (GERTs), for the accurate intraoperative positioning of SLNs with a sufficient surgical time window is designed. In white New Zealand rabbit models, GERTs enable precise identification of SLNs within 10 min, as well as provide the surgeon with a more than 4 h time window to differentiate SLN and 2nd LN. In addition, the ultrahigh sensitivity of GERTs (detection limit is 0.5 × 10-12 m) allows detection of labeled SLNs before surgery, thereby providing preoperative positioning information for minimally invasive surgery. Comprehensive biosafety evaluations carried out in the context of the Food and Drug Administration and International Standard Organization demonstrate no significant toxicity of GERTs, which supports a promising clinical translation opportunity of GERTs for precise SLN identification in breast cancer.
Collapse
Affiliation(s)
- Binge Deng
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Yaohui Wang
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Yifan Wu
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Wenjin Yin
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jinsong Lu
- Department of Breast SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
- Shanghai Key Laboratory of Gynecologic OncologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
3
|
Unak P, Tekin V, Guldu OK, Aras O. 89Zr Labeled Fe 3O 4@TiO 2 Nanoparticles: In Vitro Afffinities with Breast and Prostate Cancer Cells. Appl Organomet Chem 2020; 34:e5616. [PMID: 34732968 PMCID: PMC8562718 DOI: 10.1002/aoc.5616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/16/2020] [Indexed: 11/09/2023]
Abstract
In this study, Fe3O4@TiO2 nanoparticles were synthesized as a new Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) hybrid imaging agent and radiolabeled with 89Zr. In addition, Fe3O4 nanoparticles were synthesized and radiolabeled with 89Zr. Df-Bz-NCS was used as bifunctional ligand. The nanoconjugates were characterized with transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Radiolabeling yields were 100%. Breast and prostate cancer cell affinities and cytotoxicity were determined using in vitro cell culture assays. The results demonstrated that Fe3O4@TiO2 nanoparticles are promising for PET/MR imaging. Finally, unlike Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles showed a fluorescence spectrum at an excitation wavelength of 250 nm and an emission wavelength of 314 nm. Therefore, in addition to bearing the magnetic properties of Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles display fluorescence emission. This provides them with photodynamic therapy potential. Therefore multimodal treatment was performed with the combination of PDT and RT by using human prostate cancer cell line (PC3). The development of 89Zr-Df-Bz-NCS-Fe3O4@TiO2 nanoparticles as a new multifunctional PET/MRI agent with photodynamic therapy and hyperthermia therapeutic ability would be very useful.
Collapse
Affiliation(s)
- Perihan Unak
- Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, 35100 Bornova Izmir, Turkey
| | - Volkan Tekin
- Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, 35100 Bornova Izmir, Turkey
| | - Ozge Kozgus Guldu
- Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, 35100 Bornova Izmir, Turkey
| | - Omer Aras
- Memorial Sloan Kettering Cancer Center, Department of Radiology, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
4
|
Kleynhans J, Grobler AF, Ebenhan T, Sathekge MM, Zeevaart JR. Radiopharmaceutical enhancement by drug delivery systems: A review. J Control Release 2018; 287:177-193. [DOI: 10.1016/j.jconrel.2018.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022]
|
5
|
Effect of external magnetic field on IV 99mTc-labeled aminosilane-coated iron oxide nanoparticles: demonstration in a rat model: special report. Clin Nucl Med 2015; 40:e104-10. [PMID: 25551623 DOI: 10.1097/rlu.0000000000000672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among the most interesting applications of ferromagnetic nanoparticles (NPs) in medicine is the potential for localizing pharmacologically or radioactively tagged agents directly to selected tissues selected by an adjustable external magnetic field. This concept is demonstrated by the application external magnetic field on IV Tc-labeled aminosilane-coated iron oxide NPs in a rat model. In a model comparing a rat with a 0.3-T magnet over a hind paw versus a rat without a magnet, a static acquisition at 45 minutes showed that 27% of the administered radioactivity was in the area subtended by the magnet, whereas the liver displays a percentage of binding of 14% in the presence of the magnet and of 16% in the absence of an external magnetic field. These preliminary results suggest that the application of an external magnetic field may be a viable route for the development of methods for the confinement of magnetic NPs labeled with radioactive isotopes targeted for predetermined sites of the body.
Collapse
|
6
|
Guldu OK, Unak P, Medine EI, Barlas FB, Muftuler FZB, Timur S. Radioiodinated Magnetic Nanoparticles Conjugated With Moxifloxacin: Synthesis andIn VitroBiological Affinities. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.936597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|