1
|
Du Y, Chen Z, Yan P, Zhang C, Duan X, Chen X, Liu M, Kang L, Yang X, Fan Y, Zhang J, Wang R. Arginine-Arginine-Leucine Peptide Targeting Heat Shock Protein 70 for Cancer Imaging. Mol Pharm 2021; 18:3750-3762. [PMID: 34491767 DOI: 10.1021/acs.molpharmaceut.1c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arg-Arg-Leu (RRL) is a potent tumor-homing tripeptide. However, the binding target is unclear. In this study, we intended to identify the binding target of RRL and evaluate the tumor targeting of 99mTc-MAG3-RRL in vivo. Biotin-RRL, 5-TAMRA-RRL, and 99mTc-MAG3-RRL were designed to trace the binding target and tumor lesion. Immunoprecipitation-mass spectrometry was conducted to identify the candidate proteins and determination of the subcellular localization was also performed. A pull-down assay was performed to demonstrate the immunoprecipitate. Fluorescence colocalization and cell uptake assays were performed to elucidate the correlation between the selected binding protein and RRL, and the internalization mechanism of RRL. Biodistribution and in vivo imaging were performed to evaluate the tumor accumulation and targeting of 99mTc-MAG3-RRL. The target for RRL was screened to be heat shock protein 70 (HSP70). The prominent uptake distribution of RRL was concentrated in the membrane and cytoplasm. A pull-down assay demonstrated the existence of HSP70 in the biotin-RRL captured complex. Regarding fluorescence colocalization and cell uptake assays, RRL may interact with HSP70 at the nucleotide-binding domain (NBD). Clathrin-dependent endocytosis and macropinocytosis could be a vital internalization mechanism of RRL. In vivo imaging and biodistribution both demonstrated that 99mTc-MAG3-RRL can trace tumors with satisfactory accumulation in hepatoma xenograft mice. The radioactive signals accumulated in tumor lesions can be blocked by VER-155008, which can bind to the NBD of HSP70. Our findings revealed that RRL may interact with HSP70 and that 99mTc-MAG3-RRL could be a prospective probe for visualizing overexpressed HSP70 tumor sections.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.,Department of Nuclear Medicine, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
2
|
Kim MH, Kim SG, Kim DW. A novel Tc-99m and fluorescence-labeled arginine-arginine-leucine-containing peptide as a multimodal tumor imaging agent in a murine tumor model. J Labelled Comp Radiopharm 2018; 61:557-566. [DOI: 10.1002/jlcr.3625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Myoung Hyoun Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science; Wonkwang University School of Medicine; Iksan Jeollabuk-do South Korea
| | - Seul-Gi Kim
- Research Unit of Molecular Imaging Agent (RUMIA); Wonkwang University School of Medicine; Iksan Jeollabuk-do South Korea
| | - Dae-Weung Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science; Wonkwang University School of Medicine; Iksan Jeollabuk-do South Korea
- Research Unit of Molecular Imaging Agent (RUMIA); Wonkwang University School of Medicine; Iksan Jeollabuk-do South Korea
| |
Collapse
|
3
|
Synthesis and evaluation of Tc-99m-labeled RRL-containing peptide as a non-invasive tumor imaging agent in a mouse fibrosarcoma model. Ann Nucl Med 2015; 29:779-85. [DOI: 10.1007/s12149-015-1002-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
|
4
|
Zhao Q, Yan P, Yin L, Li L, Chen XQ, Ma C, Wang RF. Validation study of ¹³¹I-RRL: assessment of biodistribution, SPECT imaging and radiation dosimetry in mice. Mol Med Rep 2013; 7:1355-60. [PMID: 23440460 DOI: 10.3892/mmr.2013.1338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/14/2013] [Indexed: 11/05/2022] Open
Abstract
Tumor angiogenesis is important in the growth and metastasis of malignant tumors. In our previous study, we demonstrated that an arginine-arginine-leucine (RRL) peptide is a tumor endothelial cell-specific binding sequence that may be used as a molecular probe for the imaging of malignant tumors in vivo. The aim of the present study was to further explore the characteristics of 131I‑RRL by biodistribution tests, and to estimate the radiation dosimetry of 131I‑RRL for humans using mice data. The RRL peptide was radiolabeled with 131I by a chloramine-T (CH-T) method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 131I‑RRL was injected intravenously into B16 xenograft-bearing Kunming mice. Biodistribution analysis and in vivo imaging were performed periodically. The radiation dosimetry in humans was calculated according to the organ distribution and the standard medical internal radiation dose (MIRD) method in mice. All data were analyzed by statistical and MIRDOSE 3.1 software. The labeling efficiency of 131I‑RRL reached 70.0±2.91% (n=5), and the radiochemical purity exceeded 95% following purification. In mice bearing B16 xenografts, 131I‑RRL rapidly cleared from the blood and predominantly accumulated in the kidneys, the stomach and the tumor tissue. The specific uptake of 131I‑RRL in the tumor increased over time and was significantly higher than that of the other organs, 24-72 h following injection (P<0.05). The ratio of tumor-to-skeletal muscle (T/SM) tissue exceeded 4.75, and the ratio of the tumor-to-blood (T/B) tissue peaked at 3.36. In the single-photon emission computed tomography (SPECT) imaging of Kunming mice bearing B16 xenografts, the tumors were clearly identifiable at 6 h, and significant uptake was evident 24-72 h following administration of 131I‑RRL. The effective dose for the adult male dosimetric model was estimated to be 0.0293 mSv/MBq. Higher absorbed doses were estimated for the stomach (0.102 mGy/MBq), the small intestines (0.0699 mGy/MBq), the kidneys (0.0611 mGy/MBq) and the liver (0.055 mGy/MBq). These results highlight the potential of 131I‑RRL as a ligand for the SPECT imaging of tumors. Administration of 131I‑RRL led to a reasonable radiation dose burden and was safe for human use.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nuclear Medicine, Peking University First Hospital, West District, Beijing 100034, P.R. China
| | | | | | | | | | | | | |
Collapse
|