1
|
Pfeiffer IPM, Schröder MP, Mordhorst S. Opportunities and challenges of RiPP-based therapeutics. Nat Prod Rep 2024; 41:990-1019. [PMID: 38411278 DOI: 10.1039/d3np00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: up to 2024Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.
Collapse
Affiliation(s)
- Isabel P-M Pfeiffer
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Maria-Paula Schröder
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Silja Mordhorst
- University of Tübingen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
3
|
Wongso H. Natural product-based Radiopharmaceuticals:Focus on curcumin and its analogs, flavonoids, and marine peptides. J Pharm Anal 2021; 12:380-393. [PMID: 35811617 PMCID: PMC9257450 DOI: 10.1016/j.jpha.2021.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products provide a bountiful supply of pharmacologically relevant precursors for the development of various drug-related molecules, including radiopharmaceuticals. However, current knowledge regarding the importance of natural products in developing new radiopharmaceuticals remains limited. To date, several radionuclides, including gallium-68, technetium-99m, fluorine-18, iodine-131, and iodine-125, have been extensively studied for the synthesis of diagnostic and therapeutic radiopharmaceuticals. The availability of various radiolabeling methods allows the incorporation of these radionuclides into bioactive molecules in a practical and efficient manner. Of the radiolabeling methods, direct radioiodination, radiometal complexation, and halogenation are generally suitable for natural products owing to their simplicity and robustness. This review highlights the pharmacological benefits of curcumin and its analogs, flavonoids, and marine peptides in treating human pathologies and provides a perspective on the potential use of these bioactive compounds as molecular templates for the design and development of new radiopharmaceuticals. Additionally, this review provides insights into the current strategies for labeling natural products with various radionuclides using either direct or indirect methods. Potential use of natural products for the development of diagnostic and therapeutic radiopharmaceuticals. Profile of potential natural products as molecular templates for the synthesis of new radiopharmaceuticals: Focus on curcumin and its closely related substances, flavonoids, and marine peptides. Radiolabeling strategies, challenges, and examples of natural product-based radiopharmaceuticals under investigation.
Collapse
|
4
|
Kaihani S, Sadeghzadeh N. Study of the 99m Tc-labeling conditions of 6-hydrazinonicotinamide-conjugated peptides from a new perspective: Introduction to the term radio-stoichiometry. J Labelled Comp Radiopharm 2020; 63:582-596. [PMID: 32997359 DOI: 10.1002/jlcr.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 09/20/2020] [Indexed: 11/07/2022]
Abstract
Specific tumor uptake of peptide radiopharmaceuticals depends on tumor binding affinity and their radiochemical purity. Several important parameters that influence the 99m Tc-labeling and consequently the radiochemical purity of 6-hydrazinonicotinamide (HYNIC)-conjugated peptide are radionuclide activity, the amount of peptide, the amount of coligands, and the amount of reducing agents (stannous ion). In this review article, we have attempted studying these parameters in the HYNIC-conjugated peptides (somatostatin, cholecystokinin/gastrin, bombesin, and RGD analogs) from a new perspective to obtain most used and optimized radio-stoichiometric relationships. One of the most important results in this review is that for 99m Tc-labeling of HYNIC-conjugated peptides, it is better to consider the most calculated mole ratio between technetium-99m and the peptide (mole ratio of technetium-99m to the peptide 1:200-400). The statistical results also show that among these 99m Tc-labeled peptides, the most used and favorable coligand is tricine/EDDA with two to one (2:1) mole ratio. These optimized radio-stoichiometric relationships, favorable coligand mole ratio, and applicable radiolabeling points can greatly improve the labeling process of the HYNIC-conjugated peptides, by reducing trial and error, increasing specific activity, and saving materials.
Collapse
Affiliation(s)
- Sajad Kaihani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Rezazadeh F, Karoubian S, Abediankenari S, Sadeghzadeh N, Jandaghi M, Rasuli S. The Effects of the Spacer on Radiochemical and Biological Properties of New Radiolabeled Bombesin(7-14) Derivative. Curr Radiopharm 2020; 13:149-158. [PMID: 32497000 DOI: 10.2174/1874471013666200604175905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to develop 99mTc-[HYNIC-X-D-Phe13]-BBN(7-14)NH2 derivatives using two different tripeptidic spacer groups (X=GGG and X=SSS) in order to improve its pharmacokinetics, in vitro stability, specific binding, and affinity. BACKGROUND Bombesin (BBN), a 14-aminoacid amphibian peptide homolog of mammalian gastrinreleasing peptide (GRP), has demonstrated the ability to bind with high affinity and specificity to GRP receptor, which is overexpressed on a variety of human cancers. METHODS Peptide conjugates labeled with 99mTc using tricine-EDDA and radiochemical purity was assessed by TLC and HPLC. The stability of radio conjugates was evaluated in the presence of saline and human serum. Affinity, internalization, and also dissociation Constant was evaluated using MDAMB- 231 and PC-3 cell line. Biodistribution study was performed in BALB/C mice. RESULTS Labeling yield of ˃95% was obtained. The change introduced in the BBN sequence increased plasma stability. In vitro blocking studies showed that binding and internalization of both radiolabeled peptides are mediated by their receptors on the surface of MDA-MB-231 and PC-3 cells. Biodistribution results demonstrated a rapid blood clearance, with predominantly renal excretion. Specific binding in GRP receptor-positive tissues, such as pancreas was confirmed with a blocking study. CONCLUSION The introduction of the spacer sequence between chelator and BBN(7-14) led to improved bidistribution. Analog with tri-Gly spacer is the more promising radiopeptide for targeting GRP receptors than Ser conjugates. Therefore, these analogs can be considered as a candidate for the identification of bombesin-positive tumors.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Karoubian
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saied Abediankenari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Manouchehr Jandaghi
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shayan Rasuli
- Faculty of Pharmacy, Department of Radiopharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging. Bioorg Chem 2020; 99:103802. [DOI: 10.1016/j.bioorg.2020.103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
7
|
Evaluation of new 99mTc-labeled HYNIC-bombesin analogue for prostate cancer imaging. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5819-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Jalilian AR, Beiki D, Hassanzadeh-Rad A, Eftekhari A, Geramifar P, Eftekhari M. Production and Clinical Applications of Radiopharmaceuticals and Medical Radioisotopes in Iran. Semin Nucl Med 2017; 46:340-58. [PMID: 27237443 DOI: 10.1053/j.semnuclmed.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During past 3 decades, nuclear medicine has flourished as vibrant and independent medical specialty in Iran. Since that time, more than 200 nuclear physicians have been trained and now practicing in nearly 158 centers throughout the country. In the same period, Tc-99m generators and variety of cold kits for conventional nuclear medicine were locally produced for the first time. Local production has continued to mature in robust manner while fulfilling international standards. To meet the ever-growing demand at the national level and with international achievements in mind, work for production of other Tc-99m-based peptides such as ubiquicidin, bombesin, octreotide, and more recently a kit formulation for Tc-99m TRODAT-1 for clinical use was introduced. Other than the Tehran Research Reactor, the oldest facility active in production of medical radioisotopes, there is one commercial and three hospital-based cyclotrons currently operational in the country. I-131 has been one of the oldest radioisotope produced in Iran and traditionally used for treatment of thyrotoxicosis and differentiated thyroid carcinoma. Since 2009, (131)I-meta-iodobenzylguanidine has been locally available for diagnostic applications. Gallium-67 citrate, thallium-201 thallous chloride, and Indium-111 in the form of DTPA and Oxine are among the early cyclotron-produced tracers available in Iran for about 2 decades. Rb-81/Kr-81m generator has been available for pulmonary ventilation studies since 1996. Experimental production of PET radiopharmaceuticals began in 1998. This work has culminated with development and optimization of the high-scale production line of (18)F-FDG shortly after installation of PET/CT scanner in 2012. In the field of therapy, other than the use of old timers such as I-131 and different forms of P-32, there has been quite a significant advancement in production and application of therapeutic radiopharmaceuticals in recent years. Application of (131)I-meta-iodobenzylguanidine for treatment of neuroblastoma, pheochromocytoma, and other neuroendocrine tumors has been steadily increasing in major academic university hospitals. Also (153)Sm-EDTMP, (177)Lu-EDTMP, (90)Y-citrate, (90)Y-hydroxyapatite colloid, (188/186)Re-sulfur colloid, and (188/186)Re-HEDP have been locally developed and now routinely available for bone pain palliation and radiosynovectomy. Cu-64 has been available to the nuclear medicine community for some time. With recent reports in diagnostic and therapeutic applications of this agent especially in the field of oncology, we anticipate an expansion in production and availability. The initiation of the production line for gallium-68 generator is one of the latest exciting developments. We are proud that Iran would be joining the club of few nations with production lines for this type of generator. There are also quite a number of SPECT and PET tracers at research and preclinical stage of development preliminarily introduced for possible future clinical applications. Availability of fluorine-18 tracers and gallium-68 generators would no doubt allow rapid dissemination of PET/CT practices in various parts of our large country even far from a cyclotron facility. Also, local production and availability of therapeutic radiopharmaceuticals are going to open exciting horizons in the field of nuclear medicine therapy. Given the available manpower, local infrastructure of SPECT imaging, and rapidly growing population, the production of Tc-99m generators and cold kit would continue to flourish in Iran.
Collapse
Affiliation(s)
| | - Davood Beiki
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Hassanzadeh-Rad
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Eftekhari
- Diagnostic Radiology/Nuclear Medicine, Surrey Memorial Hospital and Jim Pattison Outpatient Care and Surgery Centre, Surrey, British Columbia, Canada
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Eftekhari
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Akbar MU, Ahmad MR, Shaheen A, Mushtaq S. A review on evaluation of technetium-99m labeled radiopharmaceuticals. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5019-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Comparison of estimated human effective dose of 67Ga- and 99mTc-labeled bombesin based on distribution data in mice. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-3995-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|