1
|
Li X, Hu K, Liu W, Wei Y, Sha R, Long Y, Han Y, Sun P, Wu H, Li G, Tang G, Huang S. Synthesis and evaluation of [ 18F]FP-Lys-GE11 as a new radiolabeled peptide probe for epidermal growth factor receptor (EGFR) imaging. Nucl Med Biol 2020; 90-91:84-92. [PMID: 33189948 DOI: 10.1016/j.nucmedbio.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The epidermal growth factor receptor (EGFR) has emerged as an attractive target in the treatment of various cancers. Radiolabeled small molecules, antibodies, and peptides that specifically target EGFR are promising probes for tumor imaging to guide personalized treatment with EGFR-targeted drugs. This study aimed to radiolabel GE11 (an EGFR-specific targeting peptide) with 18-fluorine to develop a new EGFR-targeting positron emission tomography (PET) probe, [18F]FP-Lys-GE11, for imaging tumors overexpressing EGFR. METHODS [18F]FP-Lys-GE11 was produced by radiolabeling a GE11 peptide with the prosthetic group 4-nitrophenyl-2-[18F]fluoropropionate ([18F]NFP). Stability in PBS and mice serum, affinity for A431 cell line, U87 and PC-3 cells uptake and blocking studies, and biodistribution of [18F]FP-Lys-GE11 were determined. 2 h dynamic and static PET scans of probe for tumor-bearing mice normal and inhibition uptake were performed. RESULTS [18F]FP-Lys-GE11 was stable in PBS and mice serum. The Kd and Bmax values of probe for A431 were 42.43 ± 3.75 nM and 3383 ± 81.73 CPM, respectively. In cell uptake and blocking experiments, a significant reduction in radioactivity accumulation (over 4-fold) was observed by blocking U87 and PC-3 cells with unlabeled peptide. PET imaging of U87 and PC-3 tumor-bearing mice revealed clear tumor imaging (tumor radioactivity accumulation was 3.48 ± 0.44 and 3.68 ± 0.76%ID/g respectively, tumor-to-muscle ratio was 3.45 ± 0.43 and 3.64 ± 0.76 respectively). Blocking imaging revealed that the U87 tumor uptake was significantly inhibited (2.21 ± 0.41%ID/g). The biodistribution and dynamic PET imaging showed that [18F]FP-Lys-GE11 was mainly excreted by the kidneys and the rest was excreted through the bile and intestines. CONCLUSION The current results showed that [18F]FP-Lys-GE11was a good radiolabeled peptide probe for EGFR overexpression tumor's imaging.
Collapse
Affiliation(s)
- Xueli Li
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Kongzhen Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yuanfeng Wei
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Runhua Sha
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Yongxuan Long
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Penhui Sun
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Guiping Li
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Ganghua Tang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China
| | - Shun Huang
- Medical Imaging Profession, Nanfang Hospital, Southern Medical University, Guangdong 510515, China; Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, China.
| |
Collapse
|
2
|
Synthesis and Evaluation of 18F-Labeled Peptide for Gonadotropin-Releasing Hormone Receptor Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5635269. [PMID: 30983920 PMCID: PMC6431521 DOI: 10.1155/2019/5635269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) receptor is overexpressed in the majority of tumors of the human reproductive system. The purpose of this study was to develop an 18F-labeled peptide for tumor GnRH receptor imaging. In this study, the GnRH (pGlu1-His2-Trp3-Ser4-Tyr5-Gly6-Leu7-Arg8-Pro9-Gly10-NH2) peptide analogues FP-d-Lys6-GnRH (FP = 2-fluoropropanoyl) and NOTA-P-d-Lys6-GnRH (P = ethylene glycol) were designed and synthesized. The IC50 values of FP-d-Lys6-GnRH and NOTA-P-d-Lys6-GnRH were 2.0 nM and 56.2 nM, respectively. 4-Nitrophenyl-2-[18F]fluoropropionate was conjugated to the ε-amino group of the d-lysine side chain of d-Lys6-GnRH to yield the new tracer [18F]FP-d-Lys6-GnRH with a decay-corrected yield of 8 ± 3% and a specific activity of 20−100 GBq/µmol (n=6). Cell uptake studies of [18F]FP-d-Lys6-GnRH in GnRH receptor-positive PC-3 cells and GnRH receptor-negative CHO-K1 cells indicated receptor-specific accumulation. Biodistribution and PET studies in nude mice bearing PC-3 xenografted tumors showed that [18F]FP-d-Lys6-GnRH was localized in tumors with a higher uptake than in surrounding muscle and heart tissues. Furthermore, the metabolic stability of [18F]FP-d-Lys6-GnRH was determined in mouse blood and PC-3 tumor homogenates at 1 h after tracer injection. The presented results indicated a potential of the novel tracer [18F]FP-d-Lys6-GnRH for tumor GnRH receptor imaging.
Collapse
|
3
|
Wen F, Nie D, Hu K, Tang G, Yao S, Tang C. Semi-automatic synthesis and biodistribution of N-(2- 18F-fluoropropionyl)-bis(zinc (II)-dipicolylamine) ( 18F-FP-DPAZn2) for AD model imaging. BMC Med Imaging 2017; 17:27. [PMID: 28431519 PMCID: PMC5399867 DOI: 10.1186/s12880-017-0200-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Phosphatidylserine (PS)-targeting positron emission tomography (PET) imaging with labeled small-molecule tracer is a crucial non-invasive molecule imaging method of apoptosis. In this study, semi-automatic radiosynthesis and biodistribution of N-(2-18F-fluoropropionyl)-bis(zinc(II)-dipicolylamine) (18F-FP-DPAZn2), as a potential small-molecule tracer for PET imaging of cell death in Alzheimer's disease (AD) model, were performed. METHODS 18F-FP-DPAZn2 was synthesized on the modified PET-MF-2V-IT-I synthesizer. Biodistribution was determined in normal mice and PET images of AD model were obtained on a micro PET-CT scanner. RESULTS With the modified synthesizer, the total decay-corrected radiochemical yield of 18F-FP-DPAZn2 was 35 ± 6% (n = 5) from 18F- within 105 ± 10 min. Biodistribution results showed that kidney has the highest uptake of 18F-FP-DPAZn2. The uptake of radioactivity in brain kept at a relatively low level during the whole observed time. In vivo 18F-FP-DPAZn2 PET images demonstrated more accumulation of radioactivity in the brain of AD model mice than that in the brain of normal mice. CONCLUSIONS The semi-automatic synthetic method provides a slightly higher radiochemical yield and shorter whole synthesis time of 18F-FP-DPAZn2 than the manual operation method. This improved method can give enough radioactivity and high radiochemical purity of 18F-FP-DPAZn2 for in vivo PET imaging. The results show that 18F-FP-DPAZn2 seems to be a potential cell death tracer for AD imaging.
Collapse
Affiliation(s)
- Fuhua Wen
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Dahong Nie
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Kongzhen Hu
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Ganghua Tang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Shaobo Yao
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Caihua Tang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| |
Collapse
|
4
|
Hu K, Tang X, Tang G, Yao S, Yao B, Wang H, Nie D, Liang X, Tang C, He S. 18F-FP-PEG2-β-Glu-RGD2: A Symmetric Integrin αvβ3-Targeting Radiotracer for Tumor PET Imaging. PLoS One 2015; 10:e0138675. [PMID: 26397833 PMCID: PMC4580323 DOI: 10.1371/journal.pone.0138675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/02/2015] [Indexed: 12/14/2022] Open
Abstract
Radiolabeled cyclic arginine-glycine-aspartic (RGD) peptides can be used for noninvasive determination of integrin αvβ3 expression in tumors. In this study, we performed radiosynthesis and biological evaluation of a new 18F-labeled RGD homodimeric peptide with one 8-amino-3,6-dioxaoctanoic acid (PEG2) linker on the glutamate β-amino group (18F-FP-PEG2-β-Glu-RGD2) as a symmetric PET tracer for tumor imaging. Biodistribution studies showed that radioactivity of 18F-FP-PEG2-β-Glu-RGD2 was rapidly cleared from blood by predominately renal excretion. MicroPET-CT imaging with 18F-FP-PEG2-β-Glu-RGD2 revealed high tumor contrast and low background in A549 human lung adenocarcinoma-bearing mouse models, PC-3 prostate cancer-bearing mouse models, and orthotopic transplanted C6 brain glioma models. 18F-FP-PEG2-β-Glu-RGD2 exhibited good stability in vitro and in vivo. The results suggest that this tracer is a potential PET tracer for tumor imaging.
Collapse
Affiliation(s)
- Kongzhen Hu
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaolan Tang
- College of Materials and Energy, Southern China Agricultural University, Guangzhou, 510642, China
| | - Ganghua Tang
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shaobo Yao
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Baoguo Yao
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongliang Wang
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiang Liang
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Caihua Tang
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shanzhen He
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
5
|
Hu K, Wang H, Tang G, Huang T, Tang X, Liang X, Yao S, Nie D. In Vivo Cancer Dual-Targeting and Dual-Modality Imaging with Functionalized Quantum Dots. J Nucl Med 2015; 56:1278-1284. [PMID: 26112023 DOI: 10.2967/jnumed.115.158873] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022] Open
|
6
|
Yao S, Hu K, Tang G, Liang X, Du K, Nie D, Jiang S, Zang L. Positron emission tomography imaging of cell death with [(18)F]FPDuramycin. Apoptosis 2014; 19:841-50. [PMID: 24464510 DOI: 10.1007/s10495-013-0964-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The noninvasive imaging of cell death, including apoptosis and necrosis, is an important tool for the assessment of degenerative diseases and in the monitoring of tumor treatments. Duramycin is a peptide of 19-amino acids. It binds specifically to phosphatidylethanolamine a novel molecular target for cell death. N-(2-(18)F-Fluoropropionyl)duramycin ([(18)F]FPDuramycin) was prepared as a novel positron emission tomography (PET) tracer from the reaction of duramycin with 4-nitrophenyl 2-[(18)F]fluoropropionate ([(18)F]NFP). Compared with control cells (viable tumor cells), the in vitro binding of [(18)F]FPDuramycin with apoptotic cells induced by anti-Fas antibody resulted in a doubling increase, while the binding of [(18)F]FPDuramycin with necrotic cells induced by three freeze and thaw cycles resulted in a threefold increase. Biodistribution study in mice exhibited its rapid blood and renal clearance and predominant accumulation in liver and spleen over 120 min postinjection. Small-animal PET/CT imaging with [(18)F]FPDuramycin proved to be a successful way to visualize in vivo therapeutic-induced tumor cell death. In summary, [(18)F]FPDuramycin seems to be a potential PET probe candidate for noninvasive visualization of in vivo cell death sites induced by chemotherapy in tumors.
Collapse
Affiliation(s)
- Shaobo Yao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hu K, Du K, Tang G, Yao S, Wang H, Liang X, Yao B, Huang T, Zang L. Radiosynthesis and biological evaluation of N-[18F]labeled glutamic acid as a tumor metabolic imaging tracer. PLoS One 2014; 9:e93262. [PMID: 24681642 PMCID: PMC3969356 DOI: 10.1371/journal.pone.0093262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/03/2014] [Indexed: 12/16/2022] Open
Abstract
We have previously reported that N-(2-[18F]fluoropropionyl)-L-methionine ([18F]FPMET) selectively accumulates in tumors. However, due to the poor pharmacokinetics of [18F]FPMET in vivo, the potential clinical translation of this observation is hampered. In this study, we rationally designed and synthesized [18F] or [11C]labeled N-position L-glutamic acid analogues for tumor imaging. N-(2-[18F]fluoropropionyl)-L-glutamic acid ([18F]FPGLU) was synthesized with a 30±10% (n = 10, decay-corrected) overall radiochemical yield and a specific activity of 40±25 GBq/μmol (n = 10) after 130 min of radiosynthesis. In vitro cell experiments showed that [18F]FPGLU was primarily transported through the XAG(-) system and was not incorporated into protein. [18F]FPGLU was stable in urine, tumor tissues, and blood. We were able to use [18F]FPGLU in PET imaging and obtained high tumor to background ratios when visualizing tumors tissues in animal models.
Collapse
Affiliation(s)
- Kongzhen Hu
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ganghua Tang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaobo Yao
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongliang Wang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Liang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Baoguo Yao
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Huang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|