Nikolopoulos D, Alam A, Petraki E, Papoutsidakis M, Yannakopoulos P, Moustris KP. Stochastic and Self-Organisation Patterns in a 17-Year PM
10 Time Series in Athens, Greece.
ENTROPY 2021;
23:e23030307. [PMID:
33807725 PMCID:
PMC7999766 DOI:
10.3390/e23030307]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
This paper utilises statistical and entropy methods for the investigation of a 17-year PM10 time series recorded from five stations in Athens, Greece, in order to delineate existing stochastic and self-organisation trends. Stochastic patterns are analysed via lumping and sliding, in windows of various lengths. Decreasing trends are found between Windows 1 and 3500-4000, for all stations. Self-organisation is studied through Boltzmann and Tsallis entropy via sliding and symbolic dynamics in selected parts. Several values are below -2 (Boltzmann entropy) and 1.18 (Tsallis entropy) over the Boltzmann constant. A published method is utilised to locate areas for which the PM10 system is out of stochastic behaviour and, simultaneously, exhibits critical self-organised tendencies. Sixty-six two-month windows are found for various dates. From these, nine are common to at least three different stations. Combining previous publications, two areas are non-stochastic and exhibit, simultaneously, fractal, long-memory and self-organisation patterns through a combination of 15 different fractal and SOC analysis techniques. In these areas, block-entropy (range 0.650-2.924) is significantly lower compared to the remaining areas of non-stochastic but self-organisation trends. It is the first time to utilise entropy analysis for PM10 series and, importantly, in combination with results from previously published fractal methods.
Collapse