1
|
George J, Salcedo R, Greenberg R, Elshendidi H, McGregor D, Burton-Pye B, Francesconi LC, Paulenova A, Gelis AV, Poineau F. Structural Investigation of Technetium Dibutylphosphate Species Using X-ray Absorption Fine Structure Spectroscopy. Inorg Chem 2023; 62:16378-16387. [PMID: 37751567 DOI: 10.1021/acs.inorgchem.3c02010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The speciation of Tc after the extraction of Tc(IV) from H2O and 1 M HNO3 by dibutylphosphoric acid (HDBP) in dodecane has been studied by X-ray absorption fine structure (XAFS) spectroscopy. Results show the formation of dimeric species with Tc2O2 and Tc2O units, and the formulas [Tc2O2(DBP·HDBP)4] (1) and [Tc2O(NO3)2(DBP)2(DBP·HDBP)2] (2) were, respectively, proposed for the species extracted from H2O and 1 M HNO3. The interatomic Tc-Tc distances found in the Tc2O2 and Tc2O units [2.55(3) and 3.57(4) Å, respectively] are similar to the ones found in Tc(IV) dinuclear species. It is likely that the speciation of Tc(IV) in dodecane is due to the extraction of a species with a Tc2O unit for (2) and to the redissolution of a Tc(IV)-DBP solid for (1). The XAFS results for (1) and (2) were compared to that obtained for the extraction of Tc(IV) with TBP/HDBP/dodecane from 0.5 M HNO3, (3) which highlight the formation of Tc mononuclear nitrate species {i.e., [Tc(NO3)3(DBP)] or [Tc(NO3)2(DBP·HDBP)]}. These results confirm the importance of the preparation and speciation of the Tc(IV) aqueous solutions prior to extraction and how much this influences and drives the final Tc speciation in organic extraction. These studies outline the complexity of Tc separation chemistry and provide insights into the behavior of Tc during the reprocessing of used nuclear fuel.
Collapse
Affiliation(s)
- Jonathan George
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S.Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ramsey Salcedo
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States
- Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Rachel Greenberg
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States
- Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Hossam Elshendidi
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States
- Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Donna McGregor
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States
- Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Benjamin Burton-Pye
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States
- Lehman College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Lynn C Francesconi
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States
- Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Alena Paulenova
- Department of Nuclear Engineering and Radiation Health Physics, 100 Radiation Center, Oregon State University, Corvallis, Oregon 97331-5903, United States
| | - Artem V Gelis
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S.Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Frederic Poineau
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S.Maryland Parkway, Las Vegas, Nevada 89154, United States
| |
Collapse
|
3
|
Chotkowski M. Redox interactions of technetium with neptunium in acid solutions. J Radioanal Nucl Chem 2018; 317:527-533. [PMID: 29950749 PMCID: PMC6010486 DOI: 10.1007/s10967-018-5908-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 10/31/2022]
Abstract
Redox interaction of reduced technetium forms and technetium(VII) with neptunium(III), neptunium(IV) and neptunium(VI) have been investigated using electrochemical and spectroscopic (Vis-NIR) techniques. The neptunium species most stable in 4 M H2SO4, i.e. Np(IV) ions, do not reduce Tc(VII) in contrast to Np(VI) ions which oxidize Tc(IV) species to Tc(VII). The interaction of pertechnetates with Np(III) leads to formation of Tc(IV) species. The Vis-NIR measurements showed the generation of intermediate Tc(V) and Np(V) forms during the oxidation of Tc(IV) and competitive reduction of Np(VI). Tc(V) and Np(V) forms are characterised by the bands at 460 and 980 nm respectively.
Collapse
Affiliation(s)
- Maciej Chotkowski
- 1Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.,2Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
4
|
Chotkowski M, Połomski D. Extraction of pertechnetates from HNO 3 solutions into ionic liquids. J Radioanal Nucl Chem 2017; 314:87-92. [PMID: 28989214 PMCID: PMC5610227 DOI: 10.1007/s10967-017-5362-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 12/05/2022]
Abstract
The extraction of pertechnetate ions from aquous solutions containing various concentrations of nitric acid into hydrophobic ionic liquids (ILs) has been examined at 25, 50 and 70 °C. The results show that the distribution ratio of Tc (DTc) between both phases weakly depends on the temperature and HNO3 concentration when IL’s with relatively short aliphatic chains are used. The DTc obtained for all examined ILs, except methyltrioctylammonium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidasolium hexafluorophosphate, are lower than 1.5. In the case of methyltrioctylammonium bis(trifluoromethylsulfonyl)imide a decrease of Tc concentration in aqueous solutions facilitates pertechnetate extraction into the organic phase.
Collapse
Affiliation(s)
- Maciej Chotkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Damian Połomski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.,Radiation Emergency Centre, National Atomic Energy Agency, Krucza 36, 00-522 Warsaw, Poland
| |
Collapse
|