1
|
Erkal-Aytemur A, Mülazımoğlu İE, Üstündağ Z, Caglayan MO. A novel aptasensor platform for the detection of carcinoembryonic antigen using quartz crystal microbalance. Talanta 2024; 277:126376. [PMID: 38852341 DOI: 10.1016/j.talanta.2024.126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
In this study, a quartz crystal microbalance (QCM) aptasensor for carcinoembryonic antigen (CEA), a well-known biomarker for various cancer types, was reported, utilizing two different aptamers. To achieve this, a nanofilm of 4-mercaptophenyl was electrochemically attached to gold-coated QCM crystal surfaces via the reduction of 4-mercaptobenzenediazonium salt (4 MB-DAT) using cyclic voltammetry. Subsequently, gold nanoparticles (AuNP) were affixed to this structure, and then aptamers (antiCEA1 and antiCEA2) modified with SH-functional ends bound to AuNPs completed the modification. The analytical performance of the CEA sensor was evaluated through simultaneous QCM measurements employing CEA solutions ranging from 0.1 ng/mL to 25 ng/mL. The detection limit (LOD) for CEA was determined to be 102 pg/mL for antiCEA1 and 108 pg/mL for antiCEA2 aptamers. Interday and intraday precision and accuracy tests yielded maximum results of 4.3 and + 3.8, respectively, for both aptasensors, as measured by relative standard deviation (RSD%) and relative error (RE%). The kinetic data of the aptasensors resulted in affinity values (KD) of 0.43 ± 0.14 nM for antiCEA1 and 0.75 ± 0.42 nM for antiCEA2. These values were lower than the reported values of 3.9 nM and 37.8 nM for both aptamers, respectively. The selectivity of the aptasensor was evaluated by measuring the signal changes caused by alpha-fetoprotein (AFP), cancer antigen (CA-125), and vascular endothelial growth factor (VEGF-165) individually and together at a concentration of 500 ng/mL, resulting in a maximum 4.1 % change, which was comparable to precision and accuracy values reported in the literature. After confirming the selectivity of the aptamers, recovery experiments were conducted using spiked commercial serum samples to simulate real samples, and the lowest recovery value obtained was 95.4 %. It was determined that two different aptasensors could be successfully used for the QCM-based detection of CEA in this study.
Collapse
Affiliation(s)
- Aslı Erkal-Aytemur
- Alanya Alaaddin Keykubat University, R.K. Faculty of Engineering, Fundamental Science, Antalya, Turkey
| | | | - Zafer Üstündağ
- Kütahya Dumlupınar University, Faculty of Arts and Science, Department of Chemistry, Kütahya, Turkey
| | - Mustafa Oguzhan Caglayan
- Bilecik Seyh Edebali University, Faculty of Engineering, Department of Bioengineering, Bilecik, Turkey.
| |
Collapse
|
2
|
Er OF, Kivrak H, Alpaslan D, Dudu TE. One-Step Electrochemical Sensing of CA-125 Using Onion Oil-Based Novel Organohydrogels as the Matrices. ACS OMEGA 2024; 9:17919-17930. [PMID: 38680375 PMCID: PMC11044171 DOI: 10.1021/acsomega.3c09149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
To reduce the high mortality rates caused by ovarian cancer, creating high-sensitivity, quick, basic, and inexpensive methods for following cancer antigen 125 (CA-125) levels in blood tests is of extraordinary significance. CA-125 is known as the exclusive glycoprotein employed in clinical examinations to monitor and diagnose ovarian cancer and detect its relapses as a tumor marker. Elevated concentrations of this antigen are linked to the occurrence of ovarian cancer. Herein, we designed organohydrogels (ONOHs) for identifying the level of CA-125 antigen at fast and high sensitivity with electrochemical strategies in a serum medium. The ONOH structures are synthesized with glycerol, agar, and glutaraldehyde and at distinct ratios of onion oil, and then, the ONOHs are characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Electrochemical measurements are performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) in the absence and presence of CA-125 on the designed ONOHs. For the prepared ONOH-3 electrode, two distinct linear ranges are determined as 0.41-8.3 and 8.3-249.0 U/mL. The limit of quantitation and limit of detection values are calculated as 2.415 and 0.805 μU/mL, respectively, (S/N = 3). These results prove that the developed electrode material has high sensitivity, stability, and selectivity for the detection of the CA-125 antigen. In addition, this study can be reasonable for the practical detection of CA125 in serum, permitting early cancer diagnostics and convenient treatment.
Collapse
Affiliation(s)
- Omer Faruk Er
- Rare
Earth Elements Research Institute, Turkish Energy Nuclear and Mineral
Research Agency, Ankara 06980, Turkey
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| | - Hilal Kivrak
- Department
of Chemical Engineering, Faculty of Engineering and Architectural
Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center, Eskisehir
Osmangazi University, Eskisehir 26040, Turkey
| | - Duygu Alpaslan
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| | - Tuba Ersen Dudu
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| |
Collapse
|
3
|
Development of a liquid phase radioimmunoassay for the measurement of serum ferritin levels for the detection of Covid-19 in patients. J Radioanal Nucl Chem 2022; 331:1389-1396. [PMID: 35153356 PMCID: PMC8817774 DOI: 10.1007/s10967-022-08208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/15/2022] [Indexed: 11/27/2022]
Abstract
The aim of this study was the development and analytically validation of a radioimmunoassay system for the measurement of the serum ferritin concentration as one of the laboratory biomarkers for infection by Covid-19. The main components of the system were prepared in our laboratories. The first component ferritin was extracted and purified from human spleen with high purity. The second component was the 125I-labelled ferritin tracer, prepared using Chloramine-T method. Furthermore anti-ferritin antibodies and ferritin standards were provided. The developed system is sensitive, precise, reproducible and. can be translated into a kit formulation suitable for measuring serum ferritin for the detection of Covid-19 in patients at low costs and high efficiency.
Collapse
|
4
|
Purification and radioiodination of 2, 4 di-tertiary- butyl phenol extracted from Lactococcus lactis subsp. lactis CAU: 3138-GM2 and its application on myeloma cells. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Kim JH, Lee SY, Lee SK. Development of novel lab-on-a-chip platform for high-throughput radioimmunoassay. Appl Radiat Isot 2020; 168:109526. [PMID: 33316629 DOI: 10.1016/j.apradiso.2020.109526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Radioimmunoassay (RIA) is an extremely specific and a highly sensitive type of immunoassay, but the long incubation time and generation of radioactive wastes limit the use of RIA. To complement these disadvantages of RIA, we suggest an advanced type of RIA based on a lab-on-a-chip (LOC) platform: μ-RIA. We designed a microfluidic chip for RIA and optimized the procedures of μ-RIA analysis, including surface modification, immunoreaction time, and washing. Based on the optimized conditions, we conducted a radioimmunoassay on the μ-RIA platform using a commercial RIA kit. With the μ-RIA, 5 min are adequate for analysis. The amount of reagent consumption is significantly reduced compared with conventional RIA. The standard curve with R2 = 0.9951 shows that we can quantitatively evaluate the amount of antigen present in unknown samples. We show the applicability of μ-RIA for the analysis of biomolecules and the potential of μ-RIA to be a novel platform for high-throughput analysis.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Neutron and Radioisotope Application Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Republic of Korea; School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - So-Young Lee
- Neutron and Radioisotope Application Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Seung-Kon Lee
- Neutron and Radioisotope Application Research Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Republic of Korea.
| |
Collapse
|
6
|
El-Bayoumy ASA, Sallam KM, Mehany NL. Immunoradiometric Assay for In Vitro Determination of Prostate Specific Antigen (PSA) in Human Serum Using Solid Phase Anti-PSA Coated Tubes. RADIOCHEMISTRY 2018. [DOI: 10.1134/s1066362218040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abu-Bakr El-Bayoumy AS, Hessien Keshta AT, Sallam KM, Ebeid NH, Elsheikh HM, Bayoumy BES. Extraction, purification of prostate-specific antigen (PSA), and establishment of radioimmunoassay system as a diagnostic tool for prostate disorders. J Immunoassay Immunochem 2018; 39:12-29. [PMID: 29144195 DOI: 10.1080/15321819.2017.1392320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to provide an easy and effective method for extraction and purification of prostate-specific antigen (PSA) from human seminal fluid with high quantity (14 mg) and high purity (98%). The obtained PSA was injected into rabbits for production of anti-PSA polyclonal antibody (titer 1/1000), labeled with radioactive iodine-125 for preparation of radioactive PSA tracer (purity 98 ± 1.8% and specific activity 64 ± 1.9 µCi/µg), and used in preparation of PSA standards. All prepared components can be used in PSA immunoassays specially radioimmunoassay (RIA) kit preparation as a diagnostic tool for prostatic diseases.
Collapse
Affiliation(s)
| | | | - Khaled Mohamed Sallam
- a Department of Labeled Compounds, Hot labs Centre , Atomic Energy Authority , Cairo , Egypt
| | - Nahed Hassan Ebeid
- a Department of Labeled Compounds, Hot labs Centre , Atomic Energy Authority , Cairo , Egypt
| | - Hatem Mohamed Elsheikh
- a Department of Labeled Compounds, Hot labs Centre , Atomic Energy Authority , Cairo , Egypt
| | | |
Collapse
|
8
|
Sallam KM, El-Bayoumy ASA, Farouk N. Radiolabeling of melatonin using different oxidizing agents for immunoassay purpose. RADIOCHEMISTRY 2017. [DOI: 10.1134/s10663622170600133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Study on the displacement and the graphical methods to determine specific radioactivity in radioimmunoassay. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
|
11
|
Fürjes G, Lelesz B, Tóth GK, Arday A, Szilvássy Z, Varga A, Berényi E, Németh J. Comparative distribution of somatostatin and thrittene bioactive peptides in the central nervous system of rat measured by radioimmunoassay. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-016-5132-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Lelesz B, Szilvássy Z, Tóth GK, Tóth A, Enyedi A, Felszeghy E, Varga A, Juhász B, Németh J. Radioanalytical methods for the measurement of melanin concentrating hormone (MCH) and detection its receptor in rat tissues. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4952-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
El-Bayoumy ASA, Ebeid NH, EL-Refay GR, Abdel-Hamid FF, Mehany NL, Shadia FA. Biochemical studies on production and evaluation of radioimmunoassay system for follicle stimulating hormone in human serum. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4918-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Liao J, Lu M, Tang D. Enhanced sensitivity of quartz crystal microbalance immunosensor via back-conjugation of biofunctionalized magnetic beads with an external magnetic field. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|