1
|
Zhang S, Huang Q, Chen L, Zhong Y, Hu F, Wu K, Yin X, Hamza MF, Wei Y, Ning S. Phosphination of amino-modified mesoporous silica for the selective separation of strontium. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133741. [PMID: 38341887 DOI: 10.1016/j.jhazmat.2024.133741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Radioactive strontium (90Sr) is considered as one of the most dangerous radionuclides due to its high biochemical toxicity. For the efficient and selective separation of Sr from acidic environments, a novel functional adsorbent CEPA@SBA-15-APTES was prepared in this work through the phosphorylation of amino-modified mesoporous silica with organic content of approximately 20 wt%. CEPA@SBA-15-APTES was characterized by TEM, SEM, EDS, TG-DSC, BET, FTIR, and XPS techniques, revealing its characteristics of an ordered hexagonal lattice-like structure and rich functional groups. The experimental results demonstrated that the adsorbent exhibited good adsorption capacity for Sr over a wide acidity range (i.e., from 10-10 M to 4 M HNO3). The adsorption equilibriums of Sr by CEPA@SBA-15-APTES in 10-6 M and 3 M HNO3 solutions were reached within 30 and 5 min, respectively, and the adsorption capacities at 318 K were 112.6 and 71.8 mg/g, respectively. Furthermore, by combining the experimental and characterization results, we found that the adsorption mechanism consisted of ion exchange between Sr(II) and H+ (in P-OH) in the 10-6 M HNO3 solution and coordination between the Sr(II) and oxygen-containing (CO and P = O) functional groups in the 3 M HNO3 solution.
Collapse
Affiliation(s)
- Shichang Zhang
- Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qunying Huang
- Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Lifeng Chen
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, PR China
| | - Yilai Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Fengtao Hu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Kun Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, PR China
| | - Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, PR China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, PR China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, PR China.
| |
Collapse
|