1
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
2
|
A Picture of Modern Tc-99m Radiopharmaceuticals: Production, Chemistry, and Applications in Molecular Imaging. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122526] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Even today, techentium-99m represents the radionuclide of choice for diagnostic radio-imaging applications. Its peculiar physical and chemical properties make it particularly suitable for medical imaging. By the use of molecular probes and perfusion radiotracers, it provides rapid and non-invasive evaluation of the function, physiology, and/or pathology of organs. The versatile chemistry of technetium-99m, due to its multi-oxidation states, and, consequently, the ability to produce a variety of complexes with particular desired characteristics, are the major advantages of this medical radionuclide. The advances in technetium coordination chemistry over the last 20 years, in combination with recent advances in detector technologies and reconstruction algorithms, make SPECT’s spatial resolution comparable to that of PET, allowing 99mTc radiopharmaceuticals to have an important role in nuclear medicine and to be particularly suitable for molecular imaging. In this review the most efficient chemical methods, based on the modern concept of the 99mTc-metal fragment approach, applied to the development of technetium-99m radiopharmaceuticals for molecular imaging, are described. A specific paragraph is dedicated to the development of new 99mTc-based radiopharmaceuticals for prostate cancer.
Collapse
|
3
|
Boschi A, Martini P, Costa V, Pagnoni A, Uccelli L. Interdisciplinary Tasks in the Cyclotron Production of Radiometals for Medical Applications. The Case of 47Sc as Example. Molecules 2019; 24:molecules24030444. [PMID: 30691170 PMCID: PMC6385051 DOI: 10.3390/molecules24030444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
The growing number of cyclotrons of different sizes installed in the territory has given a strong impulse to the production of conventional and emerging radionuclides for medical applications. In particular, the great advantage of using medical cyclotrons is the possibility to produce on-site, when needed (on-demand), with medical radionuclides of interest encouraging the personalized medicine approach. Radiometals satisfy the ideal characteristics that radionuclides should have for routine employment in nuclear medicine, especially since they have a robust chemistry suitable to synthetize stable in vivo radiopharmaceuticals with high radiochemical yields. In this letter several interdisciplinary aspects involved in the radiometals cyclotron production cycle are summarized focusing the attention on cyclotron production facilities, target material, and chemical processing available for medical applications. As an example, the current status and recent development in the production of the theranostic radionuclide scandium-47 have been reported.
Collapse
Affiliation(s)
- Alessandra Boschi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, Italy.
| | - Petra Martini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, Italy.
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell' Università, 2, 35020 Legnaro (PD), Italy.
| | - Valentina Costa
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, Italy.
| | - Antonella Pagnoni
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, Italy.
| | - Licia Uccelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari, 46-44121 Ferrara, Italy.
| |
Collapse
|
4
|
Esposito J, Bettoni D, Boschi A, Calderolla M, Cisternino S, Fiorentini G, Keppel G, Martini P, Maggiore M, Mou L, Pasquali M, Pranovi L, Pupillo G, Rossi Alvarez C, Sarchiapone L, Sciacca G, Skliarova H, Favaron P, Lombardi A, Antonini P, Duatti A. LARAMED: A Laboratory for Radioisotopes of Medical Interest. Molecules 2018; 24:E20. [PMID: 30577598 PMCID: PMC6337324 DOI: 10.3390/molecules24010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread availability of novel radioactive isotopes showing nuclear characteristics suitable for diagnostic and therapeutic applications in nuclear medicine (NM) has experienced a great development in the last years, particularly as a result of key advancements of cyclotron-based radioisotope production technologies. At Legnaro National Laboratories of the National Institute of Nuclear Physics (LNL-INFN), Italy, a 70-MeV high current cyclotron has been recently installed. This cyclotron will be dedicated not only to pursuing fundamental nuclear physics studies, but also to research related to other scientific fields with an emphasis on medical applications. LARAMED project was established a few years ago at LNL-INFN as a new research line aimed at exploiting the scientific power of nuclear physics for developing innovative applications to medicine. The goal of this program is to elect LNL as a worldwide recognized hub for the development of production methods of novel medical radionuclides, still unavailable for the scientific and clinical community. Although the research facility is yet to become fully operative, the LARAMED team has already started working on the cyclotron production of conventional medical radionuclides, such as Tc-99m, and on emerging radionuclides of high potential medical interest, such as Cu-67, Sc-47, and Mn-52.
Collapse
Affiliation(s)
- Juan Esposito
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Diego Bettoni
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
- Department of Physic and Earth Science, University of Ferrara, Via Saragat, 1, 44122 Ferrara, Italy.
| | - Alessandra Boschi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy.
| | - Michele Calderolla
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Sara Cisternino
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Giovanni Fiorentini
- Department of Physic and Earth Science, University of Ferrara, Via Saragat, 1, 44122 Ferrara, Italy.
| | - Giorgio Keppel
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Petra Martini
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy.
| | - Mario Maggiore
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Liliana Mou
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Micòl Pasquali
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Lorenzo Pranovi
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Gaia Pupillo
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Carlos Rossi Alvarez
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Lucia Sarchiapone
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Gabriele Sciacca
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Hanna Skliarova
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Paolo Favaron
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Augusto Lombardi
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Piergiorgio Antonini
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
| | - Adriano Duatti
- Legnaro National Laboratories, Italian National Institute for Nuclear Physics (LNL-INFN), Viale dell'Università, 2, 35020 Legnaro (PD), Italy.
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy.
| |
Collapse
|
5
|
Influence of Storage Temperature on Radiochemical Purity of 99mTc-Radiopharmaceuticals. Molecules 2018; 23:molecules23030661. [PMID: 29543722 PMCID: PMC6017376 DOI: 10.3390/molecules23030661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
The influence of effective room temperature on the radiochemical purity of 99mTc-radiopharmaceuticals was reported. This study was born from the observation that in the isolators used for the preparation of the 99mTc-radiopharmaceuticals the temperatures can be higher than those reported in the commercial illustrative leaflets of the kits. This is due, in particular, to the small size of the work area, the presence of instruments for heating, the continuous activation of air filtration, in addition to the fact that the environment of the isolator used for the 99mTc-radiopharmaceuticals preparation and storage is completely isolated and not conditioned. A total of 244 99mTc-radiopharmaceutical preparations (seven different types) have been tested and the radiochemical purity was checked at the end of preparation and until the expiry time. Moreover, we found that the mean temperature into the isolator was significantly higher than 25 °C, the temperature, in general, required for the preparation and storage of 99mTc-radiopharmaceuticals. Results confirmed the radiochemical stability of radiopharmaceutical products. However, as required in the field of quality assurance, the impact that different conditions than those required by the manufacturer on the radiopharmaceuticals quality have to be verified before human administration.
Collapse
|