1
|
222Rn Concentration in Groundwaters Circulating in Granitoid Massifs of Poland. WATER 2020. [DOI: 10.3390/w12030748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors’ research has shown that the maximum values of 222Rn activity concentration in all granitoid massifs of Poland exceed 100 Bq·L−1, i.e. the value allowed for waters intended for human consumption. Such waters should be de-radoned prior to being distributed through the water supply networks. Even more common in these areas is the occurrence of potentially medicinal radon waters, i.e. waters characterized, in accordance with Polish law, by radon activity concentration of at least 74 Bq·L−1. Such waters may be used for balneotherapeutic treatments. For the Karkonosze, Strzegom-Sobótka, Kłodzko-Złoty Stok and Kudowa massifs, the range of hydrogeochemical background of 222Rn exceeds both 74 and 100 Bq·L−1. This indicates common occurrence in these areas of both potentially medicinal radon waters and waters which require de-radoning before being supplied for human consumption. More than 50% of groundwaters from the Karkonosze granite area contain over 100 Bq·L−1 of 222Rn. This means that these waters are mostly radon and high-radon waters. The remaining massifs contain predominantly low-radon waters and radon-poor waters. The 222Rn concentrations obtained by the authors are comparable to values measured in groundwaters in other granitoid massifs in the world, creating both problems and new application possibilities.
Collapse
|
2
|
Factors Controlling the Spatial and Temporal Variability in Groundwater 222Rn and U Levels. WATER 2019. [DOI: 10.3390/w11091796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radon (222Rn) and uranium (U) measurements were conducted in 98 groundwater samples in Yongin area, Korea to identify the factors controlling their levels and spatial distributions. Groundwater samples were obtained from the different depth of wells used for drinking water and irrigation. 222Rn and U concentrations were measured using a liquid scintillation counter (LSC) equipped with a pulse-shape analyzer and inductively coupled plasma mass spectrometers (ICP-MS), respectively. Large variations were observed in groundwater concentrations of 222Rn and U, ranging between 0.6 ± 0.1–673.7 ± 8.7 Bq L−1 and 0.02–117.00 µg L−1, respectively. Correlation analysis revealed no significant relationship between field parameters (temperature, electrical conductivity, pH, and dissolved oxygen) and 222Rn or U concentrations. The fact that 222Rn and U concentrations were higher in granite areas than gneiss areas suggests that lithology plays a significant role in controlling the levels and spatial distributions of the two radionuclides. Furthermore, groundwater 222Rn and U behaviors have been affected by the existence of fault and well depth. Especially, the temporal monitoring of 222Rn suggests that 222Rn concentrations in the shallow groundwater may be controlled by variation in rainfall and artificial effects such as water curtain cultivation conducted in the winter season in this study area.
Collapse
|
3
|
Tan W, Li Y, Tan K, Xie Y, Han S, Wang P. Distribution of radon and risk assessment of its radiation dose in groundwater drinking for village people nearby the W-polymetallic metallogenic district at Dongpo in southern Hunan province, China. Appl Radiat Isot 2019; 151:39-45. [PMID: 31158704 DOI: 10.1016/j.apradiso.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Radon in the household water (especially groundwater) which is an important source of indoor radon, has become a potential health hazard to residents. In this study, radon concentrations in groundwater sampled from five villages near Dongpo W-polymetallic metallogenic region were measured using RAD-7 detector with RAD H2O accessory, and the effect of regional geology and mineralization on radon concentration in groundwater was studied. In addition, we also estimated the radiation doses received by people via ingestion of radon in water and inhalation of the radon from the indoor air while using water. The results show that the radon concentration in groundwater samples varies from 1.29 Bq L-1 to 31.31 Bq L-1 with 10.47 Bq L-1 on average, and about 31.3% of the groundwater samples analyzed have a higher radon concentration than the maximum contaminant level of 11.1 Bq L-1 recommended by United States Environmental Protection Agency (USEPA). The relatively high radon level in groundwater can be attributed to a relatively high uranium background produced by the magmatic activity and magmatic-hydrothermal system. The values of annual effective dose (AEDing) due to ingestion of radon in groundwater range from 0.002 mSv y-1 to 0.055 mSv y-1, 0.005 mSv y-1 to 0.11 mSv y-1 and 0.008 mSv y-1 to 0.188 mSv y-1 for adult, child and infant respectively. The values of annual effective dose due to the inhalation of radon released from water are 63.6, 15.4 and 3.8 times of those through the ingestion of radon in groundwater by the adults, children and infants, respectively. In addition, the values of estimated total annual effective doses are 0.020-0.480 mSv y-1, 0.017-0.406 mSv y-1 and 0.020-0.484 mSv y-1 for adult, child and infant, respectively. These values are much lower than the reference dose level of 1 mSv y-1 recommended by World Health Organization (WHO) and United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR).
Collapse
Affiliation(s)
- Wanyu Tan
- School of Resources, Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Yongmei Li
- School of Resources, Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Kaixuan Tan
- School of Resources, Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; School of Mathematics and Physics, University of South China, Hengyang, Hunan, 421001, China.
| | - Yanshi Xie
- School of Resources, Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Shili Han
- School of Resources, Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Peng Wang
- School of Resources, Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|