1
|
Kwantwi LB. The dual and multifaceted role of relaxin-2 in cancer. Clin Transl Oncol 2023; 25:2763-2771. [PMID: 36947362 DOI: 10.1007/s12094-023-03146-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
The continuous increase in cancer-associated deaths despite the substantial improvement in diagnosis and treatment has sparked discussions on the need for novel biomarkers and therapeutic strategies for cancer. Although increasing evidence has demonstrated the pivotal role of relaxin-2 in multiple cancers, their role is a double-edged sword with both protumor and antitumor having been reported in various malignant tumors. Considering this dual role, it appears the biological mechanism underpinning the action of relaxin-2 in cancer is not clear and further studies to elucidate their potential as a preventive factor for cancers are of prime importance. Herein, a summarized up-to-date report on the role of relaxin-2 in human cancer including detailed clinical and experimental evidence supporting their tumor-promoting and inhibitory functions in cancer development and progression has been elucidated. Also, signaling pathways and other factors orchestrating the activities of relaxin-2 in the tumor microenvironment has been discussed. Collectively, the evidence from this review has demonstrated the need for further evaluation of the role of relaxin-2 as a diagnostic and or prognostic biomarker for cancer.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Medical Imaging Sciences, Klintaps College of Health and Allied Sciences, Accra, DTD. TDC, 30A Klagon, Com. 19, Tema, Ghana.
| |
Collapse
|
2
|
Relaxin inhibits 177Lu-EDTMP associated cell death in osteosarcoma cells through notch-1 pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:575-585. [PMID: 36651368 DOI: 10.2478/acph-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2022] [Indexed: 01/25/2023]
Abstract
177Lu-EDTMP (Ethylenediamine tetramethylene phosphonic acid) is the most used radioactive agent for pain palliation in bone cancer patients. The present study aims to study the impact of relaxin-2 on the 177Lu-EDTMP associated cell toxicity and death in osteosarcoma cells. MG63 and Saos-2 cells were cultured with 177Lu-EDTMP (37 MBq) for 24 h with and without pretreatment of recombinant relaxin 2 (RLXH2) for 12 and 24 h. 177Lu-EDTMP associated cellular deterioration and death was determined by LDH, MTT, and trypan blue dye assays. ELISA-based kit was used to determine apoptotic DNA fragmentation. Western blotting was used to determine expression levels of apoptotic-related signalling pathway proteins like bcl2, poly(ADP-ribose) polymerase (PARP), and MAPK (mitogen-activated protein kinase). Our results found that RLXH2 counters 177Lu-EDTMP associated cellular toxicity. Similarly, RLXH2 was able to counter 177Lu-EDTMP induced cell death in a concentration and time--dependent manner. Furthermore, it was found that RLXH2 treatment prevents apoptosis in 177Lu-EDTMP challenged cells through activation of the notch-1 pathway in a concentration- and time-dependent manner. We reported that RLXH2 significantly declined cellular toxicity and apoptosis associated with 177Lu-EDTMP in MG63 and Saos-2 cells through the notch-1 pathway.
Collapse
|
3
|
Asadian S, Piryaei A, Gheibi N, Aziz Kalantari B, Reza Davarpanah M, Azad M, Kapustina V, Alikhani M, Moghbeli Nejad S, Keshavarz Alikhani H, Mohamadi M, Shpichka A, Timashev P, Hassan M, Vosough M. Rhenium Perrhenate ( 188ReO 4) Induced Apoptosis and Reduced Cancerous Phenotype in Liver Cancer Cells. Cells 2022; 11:305. [PMID: 35053421 PMCID: PMC8774126 DOI: 10.3390/cells11020305] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Recurrence in hepatocellular carcinoma (HCC) after conventional treatments is a crucial challenge. Despite the promising progress in advanced targeted therapies, HCC is the fourth leading cause of cancer death worldwide. Radionuclide therapy can potentially be a practical targeted approach to address this concern. Rhenium-188 (188Re) is a β-emitting radionuclide used in the clinic to induce apoptosis and inhibit cell proliferation. Although adherent cell cultures are efficient and reliable, appropriate cell-cell and cell-extracellular matrix (ECM) contact is still lacking. Thus, we herein aimed to assess 188Re as a potential therapeutic component for HCC in 2D and 3D models. The death rate in treated Huh7 and HepG2 lines was significantly higher than in untreated control groups using viability assay. After treatment with 188ReO4, Annexin/PI data indicated considerable apoptosis induction in HepG2 cells after 48 h but not Huh7 cells. Quantitative RT-PCR and western blotting data also showed increased apoptosis in response to 188ReO4 treatment. In Huh7 cells, exposure to an effective dose of 188ReO4 led to cell cycle arrest in the G2 phase. Moreover, colony formation assay confirmed post-exposure growth suppression in Huh7 and HepG2 cells. Then, the immunostaining displayed proliferation inhibition in the 188ReO4-treated cells on 3D scaffolds of liver ECM. The PI3-AKT signaling pathway was activated in 3D culture but not in 2D culture. In nude mice, Huh7 cells treated with an effective dose of 188ReO4 lost their tumor formation ability compared to the control group. These findings suggest that 188ReO4 can be a potential new therapeutic agent against HCC through induction of apoptosis and cell cycle arrest and inhibition of tumor formation. This approach can be effectively combined with antibodies and peptides for more selective and personalized therapy.
Collapse
Affiliation(s)
- Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 16123798, Iran;
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 16123798, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Bagher Aziz Kalantari
- Department of Organic Chemistry, Karaj Branch, Islamic Azad University, Karaj 16255879, Iran;
| | | | - Mehdi Azad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Valentina Kapustina
- Department of Internal Medicine N1, Sechenov University, 119991 Moscow, Russia;
| | - Mehdi Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Sahar Moghbeli Nejad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin 34199153, Iran; (S.A.); (M.A.); (S.M.N.)
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
| | - Morteza Mohamadi
- Department of Physical Chemistry, Faculty of Science, University of Tehran, Tehran 17456987, Iran;
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia;
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia;
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden;
- Clinical Research Center, Karolinska University Hospital Huddinge, 141-83 Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635148, Iran; (M.A.); (H.K.A.)
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden;
- Clinical Research Center, Karolinska University Hospital Huddinge, 141-83 Stockholm, Sweden
| |
Collapse
|
4
|
Huang Y, Zhai X, Ma T, Zhang M, Pan H, Weijia Lu W, Zhao X, Sun T, Li Y, Shen J, Yan C, Du Y. Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|