1
|
Wang Y, Liu J, Shi J, Zhou X, Tan Y, Dai Z, Zhen D, Li L. Colorimetric sensing for the sensitive detection of UO 22+via the phosphorylation functionalized mesoporous silica-based controlled release system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:837-845. [PMID: 38230997 DOI: 10.1039/d3ay01281f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this study, we developed a simple and sensitive colorimetric sensing method for the detection of UO22+, which was built to release MB from the molybdenum disulfide with a phosphate group (MoS2-PO4) gated mesoporous silica nanoparticles functionalized phosphate group (MSN-PO4) with UO22+ chelating. In the presence of UO22+, MoS2-PO4 can be effectively adsorbed onto the surface of MSN-PO4 based on the coordination chemistry for strong affinity between the P-O bond and UO22+. The adsorbed MoS2-PO4 was then utilized as an ideal gate material to control the release of signal molecules (MB) entrapped within the pores of MSN-PO4, resulting in a detectable decrease in the absorption peak at 663 nm. This colorimetric sensing demonstrated the advantages of simplicity and easy manipulation and exhibited a linear response to the concentration of UO22+ within the range of 0.02-0.2 μM. The detection limit of UO22+ was determined to be 0.85 nM, which was lower than the limit (130 nmol L-1) set by the US Environmental Protection Agency. Furthermore, the proposed colorimetric sensing method has been utilized to determine UO22+ in samples of Xiangjiang River and tap water, and a high recovery rate was achieved. This method shows promising potential in preventing and controlling environmental pollution.
Collapse
Affiliation(s)
- Yating Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Jinquan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Jiao Shi
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Xiayu Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Tan
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongran Dai
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low-Grade Uranium Resources, University of South China, Hengyang 421001, People's Republic of China
| | - Deshuai Zhen
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| | - Le Li
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang 421001, People's Republic of China
- Key Laboratory of Health Hazard Factors Inspection and Quarantine, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
2
|
Peng Q, Jin T, Wang C, Qian Y. Phytic acid-modified carboxymethyl cellulose hydrogel for uranium adsorption from aqueous solutions. Int J Biol Macromol 2024; 256:128545. [PMID: 38043668 DOI: 10.1016/j.ijbiomac.2023.128545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Phytic acid-modified carboxymethyl cellulose (CMC-PA) has been investigated as a promising adsorbent for the removal of uranium from aqueous solutions. The synthesis of CMC-PA involves the hydrogen bonding interaction between CMC and PA, resulting in the incorporation of PA groups onto the cellulose backbone. The hydrophilicity, reusability and adsorption capacity of the prepared CMC-PA hydrogel have improved with the increase of PA content. Moreover, the adsorption experiments were conducted by varying parameters such as pH, initial uranium concentration, and contact time. The results showed that CMC-PA exhibited excellent uranium adsorption performance, with a theoretical maximum adsorption capacity of 436 mg/g. In addition, the material exhibits excellent reusability, and the reusability improves with the increase of crosslinking density, indicating that the crosslinking structure of the polymer gel can effectively enhance the structural stability of the material. Furthermore, CMC-PA also exhibits high selective adsorption performance towards uranium ions in the presence of various competing ions. Its high adsorption capacity, reusability, and selectivity make it a promising candidate for high-performance uranium ion adsorbents.
Collapse
Affiliation(s)
- Qihang Peng
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Tianxiang Jin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Chongshi Wang
- College of Engineering, Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA 19104, United States
| | - Yong Qian
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
3
|
Zhang Y, Jiang Y, Bai S, Dong Z, Cao X, Wei Q, Wang Y, Zhang Z, Liu Y. Ultra-fast uranium capture via the synergistic interaction of the intrinsic sulfur atoms and the phosphoric acid groups adhered to edge sulfur of MoS 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131745. [PMID: 37295327 DOI: 10.1016/j.jhazmat.2023.131745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
In order to deal with the sudden nuclear leakage event to suppress the spread of radioactive contaminants in a short period of time, it is extremely urgent needed to explore an adsorbent that could be capable of in-situ remedial actions to rapidly capture the leaked radionuclides in split second. An adsorbent was developed that MoS2 via ultrasonic to expose more surface defects afterwards functionalized by phosphoric acid resulting in more active sites being endowed on the edge S atoms of Mo-vacancy defects, while simultaneously increased the hydrophilicity and interlayer spacing. Hence, an overwhelming fast adsorption rates (adsorption equilibrium within 30 s) are presented and place the MoS2-PO4 at the top of performing sorbent materials. Moreover, the maximum capacity calculated from Langmuir model is as high as 354.61 mg·g-1, the selective adsorption capacity (SU) achieving 71.2% in the multi-ion system and with more than 91% capacity retention after 5 cycles of recycling. Finally, XPS and DFT insight into the adsorption mechanism, which can be explained as interaction of UO22+ on the surface of MoS2-PO4 by forming U-O and U-S bonds. The successful fabrication of such a material may provide a promising solution for emergency treatment of radioactive wastewater during nuclear leakage events.
Collapse
Affiliation(s)
- Yinshan Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yuanping Jiang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Shuxuan Bai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Qianglin Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yingcai Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| |
Collapse
|
4
|
Pan Y, Zhang C, Sheng G, Li M, Linghu W, Huang R. Highly efficient scavenging of uranium(VI) by molybdenum disulfide loaded ferrous sulfide composites: Kinetics, thermodynamics and mechanism aspects. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
5
|
Sun Y, Yuan N, Ge Y, Ye T, Yang Z, Zou L, Ma W, Lu L. Adsorption behavior and mechanism of U(VI) onto phytic Acid-modified Biochar/MoS2 heterojunction materials. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Liu R, Wang H, Yue C, Zhang X, Wang M, Liu L. Synthesis of molybdenum disulfide/graphene oxide composites for effective removal of U (VI) from aqueous solutions. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Jin T, Huang B, Huang J, He F, Liu Z, Qian Y. A novel poly (amic-acid) modified single-walled carbon nanohorns adsorbent for efficient removal of uranium (VI) from aqueous solutions and DFT study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Wang H, Yao H, Chen L, Yu Z, Yang L, Li C, Shi K, Li C, Ma S. Highly efficient capture of uranium from seawater by layered double hydroxide composite with benzamidoxime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143483. [PMID: 33229092 DOI: 10.1016/j.scitotenv.2020.143483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Through swelling/restoration reaction, benzamidoxime (BAO) is introduced into MgAl-LDH interlayers to assemble a new composite of MgAl-BAO-LDH (abbr. BAO-LDH). Wet samples of the BAO-LDH obtained by washing with diverse solvents are present in colloidal state, which facilitates the fabrication of thin film adsorbents convenient for actual application. After drying, the assembled sample exhibits floral morphology composed of thin nanosheets, much different from hexagonal morphology of NO3- intercalated MgAl-LDH precursor (NO3-LDH), demonstrating a phenomenon rarely found in swelling/restoration. The BAO-LDH depicts an extremely large maximum sorption capacity (qmU) of 327 mg·g-1 and ultra-high selectivity for U. At low U concentrations (5-10 ppm), nearly complete capture (~100%) is achieved in a wide pH range of 3-11, while at high U concentrations (110 ppm), quite high U removals (≥93.0%) are obtained at pH = 6-8, meaning perfect suitability for trapping U from seawater. For natural seawater containing trace amounts of U (3.93 ppb) coexisting with high concentration of competitive ions, the BAO-LDH displays significantly high U removal (87%). Complexation between interlayer BAO (N and O as ligands) with UO22+ and synergistic interactions of LDH layer hydroxyls with UO22+ contribute to the highly effective uranium capture. All results demonstrate the BAO-LDH is a promising adsorbent applied in seawater uranium extraction and nuclear wastewater disposal.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Lihong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zihuan Yu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lixiao Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cheng Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Keren Shi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Cuiqing Li
- Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
Shao D, Hou G, Chi F, Lu X, Ren X. Transformation details of poly(acrylonitrile) to poly(amidoxime) during the amidoximation process. RSC Adv 2021; 11:1909-1915. [PMID: 35424153 PMCID: PMC8693615 DOI: 10.1039/d0ra09096d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
During the amidoximation process, transformation details of poly(acrylonitrile) (PAN) to poly(amidoxime) (PAO) is critical for optimizing amidoximation conditions, which determine the physicochemical properties and adsorption capabilities of PAO-based materials. Although the optimization of amidoximation conditions can be reported in the literature, a detailed research on the transformation is still missing. Herein, the effect of the amidoximation conditions (i.e. temperature, time, and NH2OH concentration) on the physicochemical properties and adsorption capabilities of PAO was studied in detail. The results showed that the extent of amidoximation reaction increased with increasing temperature, time, and NH2OH concentration. However, a considerably high temperature (>60 °C) and a considerably long time (>3 h) could result in the degradation and decomposition of PAO's surface topologies and functional groups, and then decrease its adsorption capability for U(vi). The optimal amidoximation condition was 3 h, 60 °C and 50 g L−1 NH2OH. At this condition, the PAO obtained presented the highest adsorption capability for U(vi) under experimental conditions. These results provide pivotal information on the transformation of PAO-based materials during the amidoximation process. During the amidoximation process, transformation details of poly(acrylonitrile) (PAN) to poly(amidoxime) (PAO) is critical for optimizing amidoximation conditions, which determine the physicochemical properties and adsorption capabilities of PAO-based materials.![]()
Collapse
Affiliation(s)
- Dadong Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 P R China
| | - Guangshun Hou
- Institute of Resources and Environment, Henan Polytechnic University Jiaozuo 454000 P R China
| | - Fangting Chi
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology Mianyang 621010 P R China
| | - Xirui Lu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology Mianyang 621010 P R China
| | - Xuemei Ren
- Institute of Plasma Physics, Chinese Academy of Sciences Hefei 230031 P R China
| |
Collapse
|
10
|
Peng W, Huang G, Yang S, Guo C, Shi J. Performance of biopolymer/graphene oxide gels for the effective adsorption of U(VI) from aqueous solution. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06727-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|