1
|
Dhanasekaran A, Priyadarshini N, Perumal I, Suresh G, Sagadevan S. Hydroxyapatite derived from eggshell embedded on functionalized g-C 3N 4 for synergistic extraction of U(VI) from aqueous solution. CHEMOSPHERE 2024; 364:143018. [PMID: 39111674 DOI: 10.1016/j.chemosphere.2024.143018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/09/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
In this paper, we report hydroxyapatite derived from egg-shell biowaste embedded on diglycolamic acid functionalized graphitic carbon nitride nanocomposite (abbreviated as HAp@D-gCN). The compositional and morphological characteristics of HAp@D-gCN were evaluated using scanning electron microscope, X-ray diffraction, BET, FTIR techniques and surface charge using zeta potential measurement. The sorption of U(VI) species on HAp@D-gCN was investigated through batch studies as a function of pH, contact time, initial U(VI) concentration, adsorbent dosage and ionic strength. The adsorption of U(VI) onto HAp@D-gCN was confirmed by FTIR, XRD and EDS elemental mapping. Adsorption kinetics follow pseudo second order model and it attains equilibrium within 20 min. Adsorption isotherm data correlates well with Langmuir isotherm model with a maximum sorption capacity of 993.6 mg of U(VI) per gram of HAp@D-gCN at 298K. U(VI) can be leached from the loaded adsorbent using 0.01 M Na2CO3 as desorbing agent and its sorption capacity remains unaffected even after 4 adsorption-desorption cycles. Hence, the present study reveals that HAp@D-gCN nanocomposite could serve as an environmental friendly material with potential application in environmental remediation.
Collapse
Affiliation(s)
- A Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India
| | - N Priyadarshini
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Ilaiyaraja Perumal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India.
| | - G Suresh
- Department of Physics, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation (DU), Chennai, 603104, Tamil Nadu, India
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, Universiti of Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| |
Collapse
|
2
|
Meza I, Hua H, Gagnon K, Mulchandani A, Gonzalez-Estrella J, Burns PC, Ali AMS, Spilde M, Peterson E, Lichtner P, Cerrato JM. Removal of Aqueous Uranyl and Arsenate Mixtures after Reaction with Limestone, PO 43-, and Ca 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20881-20892. [PMID: 38019567 PMCID: PMC10739782 DOI: 10.1021/acs.est.3c03809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L-1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43- and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca-U-P precipitation. In experiments with 2 mM PO43- and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures.
Collapse
Affiliation(s)
- Isabel Meza
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Han Hua
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kaelin Gagnon
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Anjali Mulchandani
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Peter Lichtner
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - José M Cerrato
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
- UNM Metals Exposure and Toxicity Assessment on Tribal Lands in the Southwest (UNM METALS) Superfund Research Program Center, Albuquerque,New Mexico 87131, United States
| |
Collapse
|
3
|
Xiong W, Liu H, Yang S, Liu Y, Fu T. Biomimetic synthesis of polydopamine-graphene oxide/hydroxyapatite for efficient and fast uranium(VI) capture from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114569-114581. [PMID: 37861826 DOI: 10.1007/s11356-023-30321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
A novel and efficient mesoporous nano-absorbent for U(VI) removal was developed through an environment-friendly route by inducing the biomimetic mineralization of hydroxyapatite (HAP) on the bioinspired surface of polydopamine-graphene oxide (PDA-GO). PDA-GO/HAP exhibited the greatly rapid and efficient U(VI) removal within 2 min, and much higher U(VI) adsorption capacity of 433.07 mg·g-1 than that of GO and PDA-GO. The enhanced adsorption capacity was mainly attributed to the synergistic effect of O-H, -C=N-, and PO43- functional groups and the incorporation of uranyl ions by the formation of a new phase (chernikovite, H2(UO2)2(PO4)2·8H2O). The adsorption process of U(VI) fitted well with pseudo-second-order kinetic and Langmuir isotherm model. Moreover, PDA-GO/HAP showed a high U(VI) adsorption capacity in a broad range of pH values and owned good thermal stability. PDA-GO/HAP with various excellent properties made it a greatly promising adsorbent for extracting uranium. Our work developed a good strategy for constructing fast and efficient uranium-adsorptive biomimetic materials.
Collapse
Affiliation(s)
- Weijie Xiong
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Hongjuan Liu
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
| | - Shiming Yang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Tianyu Fu
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
Behavior of uranium immobilization with hydroxyapatite and dissolution stability of the immobilization product. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Yang W, Li Q, He Y, Xi D, Arinzechi C, Zhang X, Liao Q, Yang Z, Si M. Synergistic Cr(VI) reduction and adsorption of Cu(II), Co(II) and Ni(II) by zerovalent iron-loaded hydroxyapatite. CHEMOSPHERE 2023; 313:137428. [PMID: 36460147 DOI: 10.1016/j.chemosphere.2022.137428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Multi-metal contaminated soil, such as Cr(VI), Cu(II), and Co(II), still challenge the environmental remediation. In this work, zerovalent iron-loaded hydroxyapatite (ZVI/HAP) was first applied to simultaneously adsorb multi-metal in contaminated soil. During the remediation, the co-existing Cu(II), Ni(II), and Co(II) were adsorbed and precipitated onto ZVI/HAP. This "spontaneous deposition" simultaneously achieved the adsorption of the cationic metals and improved the isoelectric point of ZVI/HAP to 4.83 from 1.59, thus significantly alleviating the electronegativity to enhance the capture and reduction efficiency of Cr(VI). The application of ZVI/HAP resulted in the reduction of more than 99% of total Cr(VI) in contaminated soil, and the almost complete adsorption of water-soluble and DTPA-extractable Cu, Ni and Co within 20 d. Based on the sequential extraction and risk reduction assessment, soil Cr, Cu, Ni, and Co speciation was transformed from an unstable state (exchangeable and carbonate-bound fractions) to a relatively stable state, reducing the risk of heavy metals in contaminated soil significantly. This study developed an efficient strategy for the remediation of multi-metal contaminated soil.
Collapse
Affiliation(s)
- Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qi Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Yuhong He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Dongdong Xi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiaoming Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
6
|
Liu H, Wang X, Li Y, Min Z, You H, Xie S, Liu Y, Yang H. Efficient uranium(VI) adsorbing bioinspired nano-sized hydroxyapatite composites: synthesis, tuning, and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18156-18167. [PMID: 36207633 DOI: 10.1007/s11356-022-23492-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The production of large amounts of uranium-containing wastewater and its potential hazards has stimulated green and efficient material removal of uranium (VI). Inspired by the natural mineralization of bone, a facile and eco-friendly biomimetic synthesis of nano-hydroxyapatite (HAP) was carried out using chitosan (CS) as a template. It was found that the reaction temperature and the amount of precursors influence the particle size, crystallinity and specific surface area of the CS/HAP nanorods, and consequently their U(VI) adsorption efficiency. Moreover, the synthesized CS/HAP-40 with smaller particle size, lower crystallinity, and larger specific surface area show a more efficient U(VI) removal compared with CS/HAP-55 and CS/HAP-55-AT. It has a maximum adsorption capacity of 294.12 mg·g-1 of the CS/HAP-40. Interestingly, the U(VI) removal mechanism of CS/HAP-40 in acidic (pH = 3) and alkaline (pH = 8) aqueous solutions was found to be different. As one of the main results, the U(VI) adsorption mechanisms at pH 8 could be surface complexation and ion exchange. On the contrary, three different mechanisms could be observed at pH 3: dissolution-precipitation to form chernikovite, surface complexation, and ion exchange.
Collapse
Affiliation(s)
- Hongjuan Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Xi Wang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Yongjiang Li
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Zefu Min
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Hang You
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
7
|
Amiri MJ. Synthesis and optimization of spherical nZVI (20-60 nm) immobilized in bio-apatite-based material for efficient removal of phosphate: Box-Behnken design in a fixed-bed column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67751-67764. [PMID: 35513629 DOI: 10.1007/s11356-022-20565-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
In the present study, bio-apatite/nZVI composite was synthesized through Fe(III) reduction with sodium borohydride and was fully characterized by FTIR, XRD, SEM-EDX, TEM, BET, BJH, and pHPZC. Column experiments were carried out for the removal of phosphate as a function of four operational parameters including initial phosphate concentration (100-200 mg L-1), initial solution pH (2-9), bed height (2-6 cm), and influent flow rate (2.5-7.5 mL min-1) using a response surface methodology (RSM) coupled with Box-Behnken design (BBD). 2D contour and 3D surface plots were employed to analyze the interactive effects of the four operating parameters on the column performance (e.g., uptake capacity and saturation time). According to ANOVA analysis, the influent flow rate and bed height are the most important factor on phosphate uptake capacity and saturation time, respectively. A quadratic polynomial model was excellently fitted to experimental data with a high coefficient of determination (> 0.96). The RSM-BBD model predicted maximum phosphate adsorption capacity of 85.71 mg g-1 with the desirability of 0.995 under the optimal conditions of 135.35 mg L-1, 2, 2 cm, and 7.5 mL min-1 for initial phosphate concentration, initial solution pH, bed height, and influent flow rate, respectively. The XRD analysis demonstrated that the reaction product between bio-apatite/nZVI composite and phosphate anions was Fe3 (PO4)2. 8H2O (vivianite). The suggested adsorbent can be effectively employed up to five fixed-bed adsorption-desorption cycles and was also implemented to adsorb phosphate from real samples.
Collapse
Affiliation(s)
- Mohammad Javad Amiri
- Department of Water Engineering, Faculty of Agriculture, Fasa University, Fasa, 74616-86131, Iran.
| |
Collapse
|
8
|
Wang M, Wu S, Guo J, Liao Z, Yang Y, Chen F, Zhu R. Enhanced immobilization of uranium(VI) during the conversion of microbially induced calcite to hydroxylapatite. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128936. [PMID: 35461002 DOI: 10.1016/j.jhazmat.2022.128936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Carbonate-bound uranium (U) is critical in controlling the migration of U in circumneutral to alkaline conditions. The potential release risk of carbonate-bound U should be concerned due to the contribution of mineral replacement. Herein, we explored the fate of U during the conversion process from microbial-induced calcite to hydroxylapatite (HAP) and investigated the phase and morphology evolution of minerals and the immobilization efficiency, distribution, and stability of U. The results showed that most calcite could convert to HAP during the conversion process. The aqueous residual U was below 1.0 mg/L after U-HAP formation, and the U removal efficiencies were enhanced by 20.0-74.4% compared to the calcite precipitation process. XRD and TEM results showed that the products were a mixture of HAP and uramphite. The elemental mapping results showed that most U concentrated on uramphite while a handful of U distributed homogeneously in calcite and HAP matrixes. The stability test verified that U-bearing HAP decreased the U solubility by 98-100% relative to calcite due to the uramphite formation and U incorporation into HAP. Our findings demonstrated that the combinations of microbial-induced calcite precipitation and calcite-HAP conversion could facilitate the U immobilization in treating radioactive wastewater and soil.
Collapse
Affiliation(s)
- Maolin Wang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Jianan Guo
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Zisheng Liao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
9
|
Immobilization of uranium soil with nHAP and composite. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04443-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Wang Y, Zhang W, Chen J, Guo Y. Preparation and characterization of a new Ca/Fe-phosphate composite and its adsorption properties for uranyl ions. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07704-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Wang S, Wang L, Li Z, Zhang P, Du K, Yuan L, Ning S, Wei Y, Shi W. Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124949. [PMID: 33385731 DOI: 10.1016/j.jhazmat.2020.124949] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
A novel composite of zero-valent iron nanoparticles supported on alkalized Ti3C2Tx nanoflakes (nZVI/Alk-Ti3C2Tx) was constructed by an in-situ growth method for simultaneous adsorption and reduction U(VI) from aqueous solution in anoxic conditions. The effect of various factors such as adsorbent dose, pH, ionic strength, contact time, initial U(VI) concentration and environmental media were comprehensively investigated by batch experiments. Benefiting from the good dispersion uniformity of nZVI on MXene substrates, nZVI/Alk-Ti3C2Tx exhibited rapid removal kinetics, excellent selectivity, 100% removal efficiency and up to 1315 mg g-1 uptake capacity for U(VI) capture. In the presence of mimic groundwater, 1.0 mM NaHCO3 and 10 mg L-1 humic acid, the removal percentages of U(VI) by the composites could reach 95.1%, 88.9% and 69.5%, respectively. The reaction mechanism between U(VI) and nZVI/Alk-Ti3C2Tx has been clarified based on FTIR, XANES, XPS and XRD analysis. Depending on the consumption of reactive nZVI in the composites and the solution pH, the elimination of U(VI) could be realized by different pathways including reductive immobilization in the form of UO2, inner-sphere surface complexation and hydrolysis precipitation. The present study illustrates that the nZVI/Alk-Ti3C2Tx composite may be an efficient scavenger for radioactive wastewater purification in environmental remediation.
Collapse
Affiliation(s)
- Siyi Wang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Zijie Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pengcheng Zhang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke Du
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shunyan Ning
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Yuezhou Wei
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
12
|
Huang T, Cao ZX, Jin JX, Zhou L, Zhang SW, Liu LF. Hydroxyapatite nanoparticle functionalized activated carbon particle electrode that removes strontium from spiked soils in a unipolar three-dimensional electrokinetic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111697. [PMID: 33246753 DOI: 10.1016/j.jenvman.2020.111697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Biohazard performance of Sr radionuclide can be significantly magnified by its release from the contaminated sedimentation. In this study, hydroxyapatite nanoparticle-functionalized activated carbon electrode (AC-HAP) was synthesized and stacked to the cathode compartment of the electrokinetic (EK) system to develop a unipolar three-dimensional (3D) electrochemical process for Sr2+ removal from spiked soils. Sr2+ adsorption by AC-HAP can be fitted by the pseudo-first-order and pseudo-second-order kinetic models and the Langmuir, Freundlich, and Temkin isotherm models. The largest monolayer adsorption capacity of AC-HAP of 69.49 mg g-1 was evaluated in the pH range of 10-12 and at 40 °C. 3D EK further intensified the adsorption process of AC-HAP and the corresponding Sr2+ removal from aqueous environments. Voltage gradients and proposing time had a significant effect on the migration and transmission of Sr2+ in the electrolyzer. The influence of competitive ions on Sr2+ removal in the stock solutions followed Al3+ < Mg2+ < K+ < Na+ < Ca2+ while followed Al3+ < Na+ < K+ < Mg2+ < Ca2+ in 3D EK. The first three cycles for AC-HAP had taken roughly 50% of the reusability percentage. Sr2+ removal from spiked samples in 3D EK was achieved by acid dissolution, electromigration, and selective uptake on particle electrode.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Zhen-Xing Cao
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Jun-Xun Jin
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| | - Long-Fei Liu
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
13
|
Liu X, Xie S, Wang G, Huang X, Duan Y, Liu H. Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium (VI) from an aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Han L, Li B, Tao S, An J, Fu B, Han Y, Li W, Li X, Peng S, Yin T. Graphene oxide-induced formation of a boron-doped iron oxide shell on the surface of NZVI for enhancing nitrate removal. CHEMOSPHERE 2020; 252:126496. [PMID: 32203782 DOI: 10.1016/j.chemosphere.2020.126496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The surface products have a significant influence on the reactivity of zero-valent iron-based materials. Although the enhancing effect of graphene on the reactivity of nanoscale zero-valent iron (NZVI)/graphene composites have been confirmed, the effect of graphene on the formation of surface products of NZVI is not well understood. In order to assess the effect of graphene on the structural of the outer iron oxide layers of NZVI, the NZVI was pre-oxidized by graphene oxide (ONZVI-GO). Compared with the NZVI oxidized by O2 (ONZVI-O2), ONZVI-GO was shown to be effective at NO3- removal with a high efficiency over a wide range of initial pH values. The results from characterization showed that GO could induce the formation of a tight iron oxide shell with dense spinel structures. The boron introduced during the preparation of NZVI was doped into iron oxides on the surface of ONZVI-GO. The B-O in adsorbed borate was transformed to B-B/B-Fe in the lattice structure of iron oxides, causing the formation of highly electron-deficient Lewis acid sites on the surface of ONZVI-GO, which could effectively gather NO3- and OH-, leading to the higher efficiency removal of NO3- than ONZVI-O2 over a wide range of initial pH values. This study provides new insight into the interaction between graphene and the surface species of NZVI.
Collapse
Affiliation(s)
- Luchao Han
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bengang Li
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Shu Tao
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie An
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bo Fu
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yunman Han
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wei Li
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xinyue Li
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Siyuan Peng
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Tianya Yin
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Wei W, Han X, Zhang M, Zhang Y, Zhang Y, Zheng C. Macromolecular humic acid modified nano-hydroxyapatite for simultaneous removal of Cu(II) and methylene blue from aqueous solution: Experimental design and adsorption study. Int J Biol Macromol 2020; 150:849-860. [DOI: 10.1016/j.ijbiomac.2020.02.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
|
16
|
Shukla A, Parmar P, Saraf M, Patel B. Isolation and screening of bacteria from radionuclide containing soil for bioremediation of contaminated sites. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00068-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|