1
|
Palansooriya KN, Yoon IH, Kim SM, Wang CH, Kwon H, Lee SH, Igalavithana AD, Mukhopadhyay R, Sarkar B, Ok YS. Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water. ENVIRONMENTAL RESEARCH 2022; 214:114072. [PMID: 35987372 DOI: 10.1016/j.envres.2022.114072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Radioactive elements released into the environment by accidental discharge constitute serious health hazards to humans and other organisms. In this study, three gasified biochars prepared from feedstock mixtures of wood, chicken manure, and food waste, and a KOH-activated biochar (40% food waste + 60% wood biochar (WFWK)) were used to remove cesium (Cs+) and strontium (Sr2+) ions from water. The physicochemical properties of the biochars before and after adsorbing Cs+ and Sr2+ were determined using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, extended X-Ray absorption fine structure (EXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The WFWK exhibited the highest adsorption capacity for Cs+ (62.7 mg/g) and Sr2+ (43.0 mg/g) among the biochars tested herein. The removal of radioactive 137Cs and 90Sr exceeded 80% and 47%, respectively, in the presence of competing ions like Na+ and Ca2+. The functional groups present in biochar, including -OH, -NH2, and -COOH, facilitated the adsorption of Cs+ and Sr2+. The Cs K-edge EXAFS spectra revealed that a single coordination shell was assigned to the Cs-O bonding at 3.11 Å, corresponding to an outer-sphere complex formed between Cs and the biochar. The designer biochar WFWK may be used as an effective adsorbent to treat radioactive 137Cs- and 90Sr-contaminated water generated during the operation of nuclear power plants and/or unintentional release, owing to the enrichment effect of the functional groups in biochar via alkaline activation.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - In-Ho Yoon
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sung-Man Kim
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Hyeonjin Kwon
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sang-Ho Lee
- Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, 132001, Haryana, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Metwally AM, Azab MM, Mahmoud AA, Ali HM, Shaaban AF. Core–shell polymer nanocomposite based on free radical copolymerization of anthranilic acid and o-amino phenol in the presence of copper hexacyanoferrates nanoparticles and its adsorption properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02933-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractCore–shell polymer nanocomposite (CSNC) of copper hexacyanoferrate-copolymer of anthranilic acid with o-aminophenol (CHCF-poly(AA-co-OAP)) was synthesized and used as ion exchanger for the sorption of cesium ions from aqueous solution. The nanocomposite was prepared by implantation of CHCF nanoparticles into copolymer of poly(AA-co-OAP) during the polymerization process. The surface morphology and the porous structure were investigated through transmission electron microscope (TEM), scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET). The characterization of the prepared (CSNC) was carried out by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Thermogravimetric (TGA). Which SEM and TEM images confirmed the nano-size of the prepared CSNC. The values of adsorption capacity of CSNC towards cesium ions and the factors influence on the removal of cesium from solutions were investigated as function in pH, metal ion concentration, temperature and contact time. The results illustrated that the highest value of sorption capacity of the prepared CSNC towards Cs+ ions was 2.1 mmol g−1 at pH 11, 10 mmol L−1 Cs+ and 25 °C. Four modeling include on Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms models were studied. According to the obtained data, Langmuir model considered the most suitable model, which suggest that the uptake of Cs+ was monolayer and homogeneous. Also, the adsorption kinetics data was fitted well to pseudo-second-order model. Thermodynamic parameters were calculated in the temperature from 25 to 60 °C and the data revealed that Cs+ sorption was endothermic, spontaneous, and more favorable at higher temperature. Up to 92% desorption of Cs+ was completed with 2 M KCl.
Collapse
|
3
|
Novel One-Pot Solvothermal Synthesis of High-Performance Copper Hexacyanoferrate for Cs+ Removal from Wastewater. J CHEM-NY 2021. [DOI: 10.1155/2021/3762917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient removal of radioactive cesium from complex wastewater is a challenge. Unlike traditional precipitation and hydrothermal synthesis, a novel vast specific surface area adsorbent of copper hexacyanoferrates named EA-CuHCF was synthesized using a one-pot solvothermal method under the moderate ethanol media characterized by XRD, SEM, EDS, BET, and FTIR. It was found that the maximum adsorption capacity towards Cs+ was 452.5 mg/g, which is far higher than most of the reported Prussian blue analogues so far. Moreover, EA-CuHCF could effectively adsorb Cs+ at a wide pH range and low concentration of Cs+ in geothermal water within 30 minutes, and the removal rate of Cs+ was 92.1%. Finally, the separation factors between Cs+ and other competitive ions were higher than 553, and the distribution coefficient of Cs+ reached up to 2.343 × 104 mL/g. These properties suggest that EA-CuHCF synthesized by the solvothermal method has high capacity and selectivity and can be used as a candidate for Cs+ removal from wastewater.
Collapse
|
4
|
Shin J, Lee SH, Kim S, Ochir D, Park Y, Kim J, Lee YG, Chon K. Effects of physicochemical properties of biochar derived from spent coffee grounds and commercial activated carbon on adsorption behavior and mechanisms of strontium ions (Sr 2+). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40623-40632. [PMID: 32677012 DOI: 10.1007/s11356-020-10095-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
This study examined differences in the adsorption isotherms, kinetic equations, and thermodynamics of Sr2+ by biochar from spent coffee grounds (SCG) and powdered activated carbon (PAC). The specific surface area (957.6 m2/g) and pore volume (0.676 cm3/g) of PAC were much greater than those of SCG biochar (specific surface area = 11.0 m2/g, pore volume = 0.009 cm3/g). However, SCG biochar showed a higher maximum adsorption capacity of Sr2+ (Qmax = 51.81 mg/g) compared with PAC (Qmax = 32.79 mg/g) due to its abundance of O-containing functional groups. The negligible removal efficiencies of Sr2+ by SCG biochar and PAC under acidic conditions (pH = 1.0-3.0) are evidence that the electrostatic repulsion might hinder severely the adsorption of Sr2+ by the carbonaceous adsorbents. The higher R2 values of the pseudo-second-order model (R2 ≥ 0.999) compared with the pseudo-first-order model (R2 ≥ 0.815) suggest that chemisorption governed the removal of Sr2+ using SCG biochar and PAC. Furthermore, the better description of the adsorption behavior of Sr2+ by the Langmuir isotherm model (R2 ≥ 0.994) than the Freundlich isotherm model (R2 ≥ 0.982) supports the assumption that the monolayer adsorption played critical roles in the removal of Sr2+ using SCG biochar and PAC. The thermodynamic studies revealed that adsorption of Sr2+ onto SCG biochar and PAC was endothermic and happened spontaneously. Despite the significant inhibitory effects of DOM, SCG biochar exhibited the higher removal efficiencies of Sr2+ compared with PAC. Hence, SCG biochar could be considered as an alternative to PAC for the removal of Sr2+ from aqueous solutions.
Collapse
Affiliation(s)
- Jaegwan Shin
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sang-Ho Lee
- Korea Hydro and Nuclear Power (KHNP) Central Research Institute, 50, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon, 34101, Republic of Korea
| | - Sangwon Kim
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Duuriimaa Ochir
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Yongeun Park
- School of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Jihye Kim
- Water Works Research Center, K-water Institute, Daejeon, 34045, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| | - Kangmin Chon
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|