1
|
Li WZ, Guo FY, Li J, Zhang XS, Liu Y, Luan J. Fabrication of bimetallic MOF-74 derived materials for high-efficiency adsorption of iodine. Dalton Trans 2024. [PMID: 39072426 DOI: 10.1039/d4dt01554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Owing to their high porosity, open metal sites, and huge surface area, metal-organic framework (MOF) materials are commonly employed in iodine adsorption processes. Bimetallic MOFs have drawn a lot of attention since mono-metal MOFs have been unable to keep up with the demand. Bimetallic MOF materials still have drawbacks, including limited adsorption capacity, extended adsorption time, poor stability, and poor selectivity, despite their positive performance in radioactive iodine capture. It has been therefore difficult to develop adsorbents with quick iodine adsorption rates and high iodine adsorption efficiency. This study investigated the adsorption properties of a series of bimetallic MOF-74 materials (Mn-Co-MOF-74, Mn-Zn-MOF-74, and Mn-Ni-MOF-74) for radioactive iodine, as well as their design and synthesis utilizing the reflux approach. It was discovered that the adsorption performance of Mn-Ni-MOF-74 for radioiodine was superior to that of the other two bimetallic MOF-74 materials. Using the bimetallic Mn-Ni-MOF-74 as a precursor, a variety of bimetallic MOF-74 derived carbon compounds (Mn-Ni-CX) were prepared by high-temperature pyrolysis. Simultaneously, the structure of the material and the iodine adsorption characteristics have been thoroughly studied.
Collapse
Affiliation(s)
- Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Fu-Yu Guo
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jing Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian Luan
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| |
Collapse
|
2
|
Tao Q, Zhang X, Jing L, Sun L, Dang P. Construction of Ketoenamine-Based Covalent Organic Frameworks with Electron-Rich Sites for Efficient and Rapid Removal of Iodine from Solution. Molecules 2023; 28:8151. [PMID: 38138639 PMCID: PMC10745408 DOI: 10.3390/molecules28248151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porous covalent organic frameworks (COFs) have been widely used for the efficient removal of iodine from solution due to their abundance of electron-rich sites. In this study, two kinds of ketoenamine-based COFs, TpBD-(OMe)2 and TpBD-Me2, are successfully synthesized via Schiff base reaction under solvothermal conditions using 1, 3, 5-triformylphoroglucinol as aldehyde monomer, o-tolidine and o-dianisidine as amino monomers. The ability of TpBD-(OMe)2 and TpBD-Me2 to adsorb iodine in cyclohexane or aqueous solutions has been quantitatively analyzed and interpreted in terms of adsorption sites. TpBD-Me2 possesses two adsorption sites, -NH- and -C=O, and exhibits an adsorption capacity of 681.67 mg/g in cyclohexane, with an initial adsorption rate of 0.6 g/mol/min with respect to COF unit cell. The adsorption capacity of TpBD-(OMe)2 can be as high as 728.77 mg/g, and the initial adsorption rate of TpBD-(OMe)2 can reach 1.2 g/mol/min in the presence of oxygen atoms between the methyl group and the benzene ring. Compared with TpBD-Me2, the higher adsorption capacity and adsorption rate of TpBD-(OMe)2 towards iodine are not only reflected in organic solvents, but also in aqueous solutions. It is proven through X-ray photoelectron spectroscopy and Raman spectroscopy that iodine exists in the form of I2, I3-, and I5- within TpBD-(OMe)2 and TpBD-Me2 after adsorption. This work not only expands the application of COFs in the field of iodine adsorption, but also provides research ideas and important an experimental basis for the optimization of iodine adsorption sites.
Collapse
Affiliation(s)
- Qi Tao
- College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
| | - Xiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Liping Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Lu Sun
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
3
|
Zhou ZH, Li XJ, Huang ZW, Mei L, Ma FQ, Yu JP, Zhang Q, Chai ZF, Hu KQ, Shi WQ. Th 6-Based Multicomponent Heterometallic Metal-Organic Frameworks Featuring 6,12-Connected Topology for Iodine Adsorption. Inorg Chem 2023; 62:15346-15351. [PMID: 37682658 DOI: 10.1021/acs.inorgchem.3c02202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Its high coordination number and tendency to cluster make Th4+ suitable for constructing metal-organic frameworks (MOFs) with novel topologies. In this work, two novel thorium-based heterometallic MOF isomers (IHEP-17 and IHEP-18) were assembled from a Th6 cluster, a multifunctional organic ligand [4-(1H-pyrazol-4-yl)benzoic acid (HPyba)], and Cu2+/Ni2+ cations via the one-pot solvothermal synthesis strategy. The framework features a 6,12-connected new topology net and contains two kinds of supramolecular cage structures, Th36M4 and Th24M2, suitable for guest exchange. Both MOF materials can efficiently adsorb I2. X-ray photoelectron spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction indicate that the adsorbed iodine is uniformly distributed within the Th36M4 cage but not the Th24M2 cage in the form of I3-.
Collapse
Affiliation(s)
- Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong, China
| | - Xing-Jun Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Qiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Sacourbaravi R, Ansari-Asl Z, Darabpour E. Magnetic polyacrylonitrile/ZIF-8/Fe3O4 nanocomposite bead as an efficient iodine adsorbent and antibacterial agent. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
A new strategy to synthesis of porous polymers from plastic waste for highly efficient adsorption of rhodamine B, malachite green and I2 vapor. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Sun MY, Wang Y, Bai FY, Xing YH. Construction of manganese-based metal organic frameworks derived from aromatic dicarboxylic acids and application for the adsorption of iodine. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work, we selected terephthalic acid or 2-amino-terephthalic acid as ligand, transition metal manganese salt as metal source under the solvothermal conditions to successfully construct two kinds of manganese-based metal-organic frameworks (Mn-MOFs): Mn3(BDC)3(H2O)2 (1) and Mn3(NH2-BDC)3(DMF)4 (2) (H2BDC = terephthalic acid; NH2-BDC = 2-amino terephthalic acid; DMF = N, N-dimethyl formamide). It was characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TG), X-ray powder diffraction (PXRD) and UV-vis absorption spectrum. It was found that the packing structures of compounds 1 and 2 were constructed by the trinuclear Mn3O16 building block and exhibited different spatial structure: compound 1 was a three-dimensional structure, and 2 was a two-dimensional network structure. The iodine adsorption in cyclohexane solution properties of compounds 1 and 2 were investigated. Research results showed that the uncoordinated amino group in the structure of framework compounds has a great influence on the iodine adsorption capacity and compound 2 had good adsorption property and reusability.
Collapse
Affiliation(s)
- Ming-Yang Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| |
Collapse
|
7
|
Iodinated vs non-iodinated: Comparison of sorption selectivity by [Zn2(bdc)2dabco]n and superstructural 2-iodoterephtalate-based metal–organic framework. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Space and structure activation of collagen fiber for high efficient capture iodine in off-gas. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Yuan G, Yu Y, Li J, Jiang D, Gu J, Tang Y, Qiu H, Xiong W, Liu N. Facile fabrication of a noval melamine derivative-doped UiO-66 composite for enhanced Co(II) removal from aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Cheng S, Chen W, Zhao L, Wang X, Qin C, Su Z. Synthesis, crystal structure and iodine capture of Zr-based metal-organic polyhedron. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zhao Y, Zhang N, Wang Y, Bai FY, Xing YH, Sun LX. Ln-MOFs with window-shaped channels based on triazine tricarboxylic acid as a linker for the highly efficient capture of cationic dyes and iodine. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01279c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Seven isostructural complexes were synthesized under solvothermal condition by the 4,4′,4′′ ((1,3,5-triazine-2,4,6-triyl)tri(azanediyl))tribenzoic acid and rare earth metal ions. It is found that 1 exhibits the adsorption capacity of 758.72 mg g−1 to iodine.
Collapse
Affiliation(s)
- Yue Zhao
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P.R. China
| | - Na Zhang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P.R. China
| | - Ying Wang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P.R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P.R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P.R. China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials
- Guilin University of Electronic Technology
- Guilin City
- P.R. China
| |
Collapse
|
13
|
Wang L, Yao C, Xie W, Xu G, Zhang S, Xu Y. A series of thiophene- and nitrogen-rich conjugated microporous polymers for efficient iodine and carbon dioxide capture. NEW J CHEM 2021. [DOI: 10.1039/d1nj03107d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of thiophene- and nitrogen-rich conjugated microporous polymers can be used for high iodine and carbon dioxide capture.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Shuran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
- School of School of Chemistry and Environmental Engineering, the Collaborative Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|