1
|
Zahakifar F, Khanramaki F, Nejad DG, Ghazanfari V, Yadollahi A. The solvent extraction and stripping process using Alamine 336 with a case study of uranium. Sci Rep 2025; 15:11749. [PMID: 40189686 PMCID: PMC11973178 DOI: 10.1038/s41598-025-96421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
In this research, a comprehensive study of the solvent extraction of uranium (VI) from acidic sulfate solutions using Alamine 336 diluted in kerosene was scrutinized. The effects of the contact time between the phases, sulfuric acid concentration, extractant concentration, uranium (VI) concentration, organic/aqueous phase ratio, and temperature were investigated. An extraction efficiency of around 99.72% was attained at a sulfuric acid concentration of 0.15 mol L-1, using 0.05 mol L-1 Alamine 336 at 25 °C with an organic/aqueous phase ratio of 1:1. The findings indicated that the extraction of uranium (VI) was a rapid, exothermic, and spontaneous process. The estimated value of Log Kex was 5.92. Parametric variations in the processing parameters indicated a strong impact of the sulfuric acid concentration on the uranium extraction. Uranium (VI) stripping from the loaded organic phase was conducted using many salt and acid solutions in four steps, and the enthalpy change of the stripping reaction was obtained. 99.87% of uranium (VI) loaded in the organic phase was stripped using 0.5 mol L-1 (NH4)2CO3 in a single stripping step. Finally, uranium (VI) extraction from the leach liquor solution was performed under optimal conditions, and the recovery of the loaded organic phase was investigated with different agents. The results showed that uranium purification has a high selectivity coefficient.
Collapse
Affiliation(s)
- Fazel Zahakifar
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Fereshte Khanramaki
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Davood Ghoddocy Nejad
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Valiyollah Ghazanfari
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Ali Yadollahi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
2
|
Zahakifar F, Dashtinejad M, Sepehrian H, Samadfam M, Fasihi J, Yadollahi A. Intensification of Cr(VI) adsorption using activated carbon adsorbent modified with ammonium persulfate. Sci Rep 2024; 14:16949. [PMID: 39043864 PMCID: PMC11266575 DOI: 10.1038/s41598-024-68105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Granular activated carbon has been modified by ammonium persulfate as a new adsorbent for Cr(VI) adsorption from aqueous solutions. The adsorbent was characterized by nitrogen adsorption-desorption isotherm data and infrared spectroscopy. The impact of different factors, such as the initial pH level of the solution, time, temperature, ionic strength, and initial concentration of the Cr(VI) ion, on the adsorption efficiencies of the adsorbent has been studied by batch experiments. Kinetic studies and the adsorption thermodynamics of Cr(VI) with ammonium persulfate-modified activated carbon adsorbent were carefully studied. The results showed that the Cr(VI) adsorption follows a pseudo-second-order kinetic model and the adsorption reaction is endothermic and spontaneous. The adsorption isotherm was scrutinized, and the fitting results showed that the Langmuir model could well represent the adsorption process. The maximum adsorption capacity of Cr(VI) onto persulfate-modified activated carbon was 108.69 mg g-1. The research results showed that using persulfate-modified activated carbon adsorbent can greatly remove Cr(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Fazel Zahakifar
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P. O. Box 11365/8486, Tehran, Iran
| | - Maryam Dashtinejad
- Department of Energy Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Hamid Sepehrian
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P. O. Box 11365/8486, Tehran, Iran.
| | - Mohammad Samadfam
- Department of Energy Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Javad Fasihi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P. O. Box 11365/8486, Tehran, Iran
| | - Ali Yadollahi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P. O. Box 11365/8486, Tehran, Iran
| |
Collapse
|
3
|
Zahakifar F, Khanramaki F. Continuous removal of thorium from aqueous solution using functionalized graphene oxide: study of adsorption kinetics in batch system and fixed bed column. Sci Rep 2024; 14:14888. [PMID: 38937613 PMCID: PMC11211423 DOI: 10.1038/s41598-024-65709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
This article investigated the kinetic studies of thorium adsorption from an aqueous solution with graphene oxide functionalized with aminomethyl phosphonic acid (AMPA) as an adsorbent. First, the AMPA-GO adsorbent was characterized using TEM, XRD, and FTIR methods. Experiments were performed in two batch and continuous modes. In batch mode, adsorption kinetics were studied in different pH (1-4), temperature (298-328 K), initial concentration (50-500 mg L-1), and dosages (0.1-2 g L-1). The results showed that thorium adsorption kinetic follows pseudo-first-order kinetic model and that the adsorption reaction is endothermic. The maximum experimental adsorption capacity of thorium ions was observed 138.84 mg g-1 at a pH of 3, adsorbent dosage of 0.5 g L-1, and a temperature of 328 K. The results showed that AMPA-GO adsorbent can be used seven times with an acceptable change in adsorption capacity. In continuous conditions, the effect of feed flow rate (2-8 mL min-1), initial concentration (50-500 mg L-1), and column bed height (2-8 cm) was investigated. The continuous data was analyzed using the Thomas, Yoon-Nelson, and Bohart-Adams models. The experimental data of the column were well matched with the Thomas, and Yoon-Nelson models. The research results showed that the use of functionalized graphene oxide adsorbents has a great ability to remove thorium from aqueous solutions.
Collapse
Affiliation(s)
- Fazel Zahakifar
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 11365-8486, Tehran, Iran.
| | - Fereshte Khanramaki
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 11365-8486, Tehran, Iran
| |
Collapse
|
4
|
He Q, Zhao H, Teng Z, Guo Y, Ji X, Hu W, Li M. Tuning microscopic structure of La-MOFs via ligand engineering effect towards enhancing phosphate adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120149. [PMID: 38278114 DOI: 10.1016/j.jenvman.2024.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
The selection of different organic ligands when synthesizing metal organic framework (MOFs) can change their effects on the adsorption performance. Here, four La-MOFs adsorbents (La-SA, La-FA, La-TA and La-OA) with different organic ligands and structures were synthesized by solvothermal method for phosphate adsorption, and the relationship between their adsorption properties and structures was established. Among four La-MOFs, their phosphate adsorption capacities and adsorption rates followed La-SA > La-FA > La-TA > La-OA. The results indicated that average pore diameter played a key role in phosphate adsorption and there was a positive correlation between average pore diameter and adsorption capacity (R2 = 0.86). Coexisting ion experiments showed that phosphate adsorptions on three La-MOFs (La-SA, La-FA and La-TA) were inhibited in the presence of CO32- and HCO3-. The inhibition of CO32- was the most pronounced and the results of redundancy analysis pointed out that it was mainly due to the change of pH value. In contrast, La-OA showed enhanced phosphate adsorption in the presence of CO32- and HCO3-, and the combination of pH experiments showed that phosphate adsorption by La-OA was increased under alkaline conditions. Further combined with FT-IR, XRD, high resolution energy spectra of XPS (La 3d, P 2p and O 1s) and XANES, the adsorption mechanisms were derived electrostatic attraction, chemical precipitation and inner sphere complexation, and the last two were identified as the main mechanisms. Moreover, it can be identified from XPS 2p that the phosphate adsorption on La-FA and La-OA were mainly in the LaPO4 state, while La-SA and La-TA mainly existed in the form of LaPO4·xH2O crystals and inner sphere complexes. From the perspective of material morphology, this work provides a thought for the rational design of MOFs with adjustable properties for phosphate adsorption.
Collapse
Affiliation(s)
- Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Aziam R, Stefan DS, Aboussabek A, Chiban M, Croitoru AM. Alginate-Moroccan Clay, New Bio-Nanocomposite for Removal of H 2PO 4-, HPO 42-, and NO 3- Ions from Aqueous Solutions. Polymers (Basel) 2023; 15:4666. [PMID: 38139918 PMCID: PMC10747846 DOI: 10.3390/polym15244666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this work is to synthesize and characterize alginate-Moroccan clay bio-composite in order to improve our understanding of the adsorption of inorganic pollutants found in textile effluents. Characterization of the bio-composite used was carried out using a variety of techniques (IR-TF, SEM, DRX, and pHZPC). The influence of the medium's physico-chemical parameters (temperature, pH, initial concentration, etc.) on the retention of inorganic pollutants was also studied. Studies of adsorption and inorganic pollutants such as orthophosphate (H2PO4- and HPO42-) and nitrate (NO3-) ions were carried out, using simple solutions from the laboratory, in a batch system. This study explored the impact of adsorbent dose, contact time, solution pH, and temperature on the adsorption process. Various kinetic models, including pseudo-first-order, pseudo-second-order, intra-particle diffusion, and Elovich models, were tested and evaluated, to illustrate the adsorption kinetics. This study's findings demonstrated that the adsorption process follows second-order kinetics, with associated rate constants successfully determined. The correlation coefficient for the pseudo-second-order kinetic model is nearly equal to 1 (>0.98), and the value of theoretical adsorption capacity (qe,the) is comparable to the experimental one (qe,the = 58.14 mg/g for H2PO4-, qe,the = 54.64 mg/g for HPO42-, and qe,the = 52.63 mg/g for NO3-). Additionally, the adsorption equilibrium was investigated through the application of various mathematical models, including the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, to assess the mechanistic parameters associated with the adsorption process. Among these models, the Langmuir isotherm emerged as the most suitable one for characterizing the adsorption of H2PO4-, HPO42-, and NO3- ions using bio-nanocomposite beads. The maximum adsorbed amounts of metal ions by the bio-nanocomposite used were 625 mg/g for H2PO4-, 909.09 mg/g for HPO42-, and 588.23 mg/g for NO3- from the batch system. The endothermic and physical nature of the adsorption is suggested by the positive values of ΔH°, which is consistent with experimental findings. The adsorption process is spontaneous, as evidenced by the negative ΔG° values. Positive ΔS° values indicate increased randomness at the solid/liquid interface during adsorption of ion-organic ions onto the engineered bio-nanocomposite. The obtained results demonstrated that, from a scientific perspective, alginate-Moroccan clay bio-nanocomposites exhibit a highly significant adsorption capability for the removal of oxyanions in aqueous environments.
Collapse
Affiliation(s)
- Rachid Aziam
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science, Ibnou Zohr University, Agadir BP 8106, Morocco; (R.A.); (A.A.); (M.C.)
| | - Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Abdelali Aboussabek
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science, Ibnou Zohr University, Agadir BP 8106, Morocco; (R.A.); (A.A.); (M.C.)
| | - Mohamed Chiban
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science, Ibnou Zohr University, Agadir BP 8106, Morocco; (R.A.); (A.A.); (M.C.)
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, National University of Science and Technology Politehnica of Bucharest, 313, Spl. Independentei Steet, 060042 Bucharest, Romania
| |
Collapse
|
6
|
Wen S, Wang H, Xin Q, Hu E, Lei Z, Hu F, Wang Q. Selective adsorption of uranium (VI) from wastewater using a UiO-66/calcium alginate/hydrothermal carbon composite material. Carbohydr Polym 2023; 315:120970. [PMID: 37230612 DOI: 10.1016/j.carbpol.2023.120970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Uranium mining, smelting, and nuclear industries generate a considerable amount of wastewater containing uranium. To treat this wastewater effectively and inexpensively, a novel hydrogel material (cUiO-66/CA) was developed by co-immobilizing UiO-66 with calcium alginate and hydrothermal carbon. Batch tests were conducted to determine the optimal adsorption conditions for uranium using cUiO-66/CA, and the adsorption behavior was spontaneous and endothermic, confirming the quasi-second-order dynamics model and the Langmuir model. At a temperature of 308.15 K and pH = 4, the maximum adsorption capacity of uranium was 337.77 mg g-1. The surface appearance and interior structure of the material were analyzed using SEM, FTIR, XPS, BET, and XRD techniques. The results indicated two possible uranium adsorption processes of cUiO-66/CA: (1) Ca2+ and UO22+ ion exchange process and (2) coordination of uranyl ions with hydroxyl and carboxyl ions to form complexes. cUiO-66/CA exhibited strong selectivity for U (VI) in a multicomponent mixed solution and uranium-containing wastewater, with uranium removal rates of 99.03 % and 81.45 %, respectively. The hydrogel material demonstrated excellent acid resistance, and the uranium adsorption rate exceeded 98 % in the pH range of 3-8. Therefore, this study suggests that cUiO-66/CA has the potential to treat uranium-containing wastewater in a broad pH range.
Collapse
Affiliation(s)
- Siqian Wen
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Fang Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Man GT, Albu PC, Nechifor AC, Grosu AR, Tanczos SK, Grosu VA, Ioan MR, Nechifor G. Thorium Removal, Recovery and Recycling: A Membrane Challenge for Urban Mining. MEMBRANES 2023; 13:765. [PMID: 37755188 PMCID: PMC10538078 DOI: 10.3390/membranes13090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in the removal, recovery and recycling of thorium from industrial residues reaching municipal waste-processing platforms. The paper includes a short introduction on the interest shown in this element, a weak radioactive metal, followed by highlighting some common (domestic) uses. In a distinct but concise section, the bio-medical impact of thorium is presented. The classic technologies for obtaining thorium are concentrated in a single schema, and the speciation of thorium is presented with an emphasis on the formation of hydroxo-complexes and complexes with common organic reagents. The determination of thorium is highlighted on the basis of its radioactivity, but especially through methods that call for extraction followed by an established electrochemical, spectral or chromatographic method. Membrane processes are presented based on the electrochemical potential difference, including barro-membrane processes, electrodialysis, liquid membranes and hybrid processes. A separate sub-chapter is devoted to proposals and recommendations for the use of membranes in order to achieve some progress in urban mining for the valorization of thorium.
Collapse
Affiliation(s)
- Geani Teodor Man
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 240050 Râmnicu Valcea, Romania
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (M.-R.I.)
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea Ciuc, Romania;
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Mihail-Răzvan Ioan
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (M.-R.I.)
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| |
Collapse
|
8
|
Removal of Co(II) from Aqueous Solutions with Amino Acid-Modified Hydrophilic Metal-Organic Frameworks. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Abstract
Nano-zeolite is an innovative class of materials that received recognition for its potential use in water and tertiary wastewater treatment. These applications include ion-exchange/sorption, photo-degradation, and membrane separation. The aim of this work is to summarize and analyze the current knowledge about the utilization of nano-zeolite in these applications, identify the gaps in this field, and highlight the challenges that face the wide scale applications of these materials. Within this context, an introduction to water quality, water and wastewater treatment, utilization of zeolite in contaminant removal from water was addressed and linked to its structure and the advances in zeolite preparation techniques were overviewed. To have insights into the trends of the scientific interest in this field, an in-depth analysis of the variation in annual research distribution over the last decade was performed for each application. This analysis covered the research that addressed the potential use of both zeolites and nano-zeolites. For each application, the characterization, experimental testing schemes, and theoretical analysis methodologies were overviewed. The results of the most advanced research were collected, summarized, and analyzed to allow an easy visualization and comparison of these research results. Finally, the gaps and challenges that face these applications are concluded.
Collapse
|
10
|
Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. MEMBRANES 2022; 12:membranes12010067. [PMID: 35054593 PMCID: PMC8778428 DOI: 10.3390/membranes12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.
Collapse
|
11
|
Doram A, Outokesh M, Ahmadi SJ, Zahakifar F. Synthesis of “(aminomethyl)phosphonic acid-functionalized graphene oxide”, and comparison of its adsorption properties for thorium(IV) ion, with plain graphene oxide. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The current study presents a simple and scalable method for the synthesis of (aminomethyl)phosphonic acid-functionalized graphene oxide (AMPA-GO) adsorbent. The chemical structure of the new material was disclosed by different instrumental analyses (e.g. FTIR, Raman, XPS, AFM, TEM, XRD, CHN, and UV), and two pertinent mechanisms namely nucleophilic substitution and condensation were suggested for its formation. Adsorption experiments revealed that both AMPA-GO and plain GO have a high affinity toward Th(IV) ions, but the AMPA-GO is superior in terms of adsorption capacity, rate of adsorption, selectivity, pH effect, etc. Indeed, the AMPA-GO can uptake Th(IV) nearly instantaneously, and coexisting Na+ ions have no effect on its adsorption. Thanks to Langmuir isotherm, the maximum adsorption capacities of the GO and AMPA-GO were obtained 151.06 and 178.67 mg g−1, respectively. Interestingly, GO and AMPA-GO both showed a higher preference for thorium over uranium so that the average “K
d
(Th)/K
d
(U)” for them was 52 and 44, respectively. This data suggests that chromatographic separation of thorium and uranium is feasible by these adsorbents.
Collapse
Affiliation(s)
- Amir Doram
- Department of Energy Engineering , Sharif University of Technology , P.O. Box 11365-8639 , Tehran , Iran
| | - Mohammad Outokesh
- Department of Energy Engineering , Sharif University of Technology , P.O. Box 11365-8639 , Tehran , Iran
| | - Seyed Javad Ahmadi
- Nuclear Fuel Cycle Research School , Nuclear Science and Technology Research Institute , AEOI, P.O. Box: 11365-8486 Tehran , Iran
| | - Fazel Zahakifar
- Nuclear Fuel Cycle Research School , Nuclear Science and Technology Research Institute , AEOI, P.O. Box: 11365-8486 Tehran , Iran
| |
Collapse
|
12
|
Performance and mechanism for U(VI) adsorption in aqueous solutions with amino-modified UiO-66. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07968-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|