1
|
Albash R, Fahmy AM, Shamsel-Din HA, Ibrahim AB, Bogari HA, Malatani RT, Abdelbari MA, Mosallam S. Intranasal propranolol hydrochloride-loaded PLGA-lipid hybrid nanoparticles for brain targeting: Optimization and biodistribution study by radiobiological evaluation. Eur J Pharm Sci 2025; 208:107061. [PMID: 40057137 DOI: 10.1016/j.ejps.2025.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The present work aimed to load propranolol hydrochloride (PN), a beta-blocking agent with low oral bioavailability, into PLGA-lipid hybrid nanoparticles (PLHNPs) for augmenting its efficacy. PLHNPs contain phospholipid (PC) in addition to PLGA to augment the potential of PLGA nanoparticles in the intranasal delivery and PN avoidance of the blood-brain barrier for the management of migraine. PLHNPs were prepared by single emulsion/ solvent evaporation method and then optimized by applying 23 full factorial design using PC amount (mg) (X1), PLGA amount (mg) (X2), and surface active agent type (X3) as independent variables, whilst their effect was inspected for entrapment efficiency percent (EE%) (Y1) and particle size (PS) (Y2). Design-Expert® was utilized to choose the optimum PLHNPs for more explorations. The optimum PLHNPs formulation (F2) had EE% of 78.00 ± 0.71 %, PS of 104.50 ± 2.04 nm, polydispersity index of 0.429 ± 0.033, and zeta potential of 23.70 ± 0.10 mV. The optimum PLHNPs formulation was stable for up to 90 days. Moreover, it showed a sustained release profile compared to PN solution. It also showed a spherical shape under a transmission electron microscope. The optimized PN-loaded PLHNPs formulation was radio formulated with radiolabeled isotope ([99mTc]Tc) in maximum radiolabeling yield (91.40 ± 1.85 %) of [99mTc]Tc-PLHNPs to be used in radiological evaluation for in-vivo biodistribution and brain targeting after oral and intranasal administration. [99mTc]Tc-PLHNPs showed higher brain targeting (5.80 ± 0.12 % ID/g) with a high brain-to-blood ratio of (2.42 ± 0.14) at 0.5 h after intranasal administration in addition to controlled blood levels and sustained release up to 8 h that confirm the efficacy of PLHNPs for brain targeting.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Abdurrahman M Fahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Shamsel-Din
- Department of Labeled Compounds, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed B Ibrahim
- Department of Labeled Compounds, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hanin A Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rania T Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
2
|
Mahmoud Abd-Alaziz D, Mansour M, Nasr M, Sammour O. Tailored green synthesized silymarin-selenium nanoparticles: Topical nanocarrier of promising antileishmanial activity. Int J Pharm 2024; 660:124275. [PMID: 38797252 DOI: 10.1016/j.ijpharm.2024.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Poor drug penetration, emerging drug resistance, and systemic toxicity are among the major obstacles challenging the current treatment of cutaneous leishmaniasis. Hence, developing advanced strategies for effective and targeted delivery of antileishmanial agents is crucial. Several drug delivery carriers have been developed till current date for dermal/transdermal delivery, especially those which are fabricated using eco-friendly synthesis approaches, since they protect the environment from the harmful effects of chemical waste disposal. This work describes the preparation of selenium nanoparticles loaded with silymarin via one-pot green reduction technique, for treatment of cutaneous leishmaniasis. The selected silymarin loaded selenium nanoparticles (SSNs4-0.1) displayed good loading efficiency of 58.22 ± 0.56 %, zeta potential of -30.63 ± 0.40 mV, hydrodynamic diameter of 245.77 ± 11.12 nm, and polydispersity index of 0.19 ± 0.01. It exhibited good physical stability, as well as high ex vivo deposition % in the epidermis (46.98 ± 1.51 %) and dermis (35.23 ± 1.72 %), which was further proven using confocal laser microscopy. It also exhibited significant cytocompatibility and noticeable cellular internalization of 90.02 ± 3.81 % in human fibroblasts, as well as high trypanothione reductase inhibitory effect (97.10 ± 0.30 %). Results of this study confirmed the successful green synthesis of silymarin-loaded selenium nanoparticles; delineating them as one of the promising antileishmanial topical delivery systems.
Collapse
Affiliation(s)
- Dina Mahmoud Abd-Alaziz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Tawfik MA, Eltaweel MM, Fatouh AM, Shamsel-Din HA, Ibrahim AB. Brain targeting of zolmitriptan via transdermal terpesomes: statistical optimization and in vivo biodistribution study by 99mTc radiolabeling technique. Drug Deliv Transl Res 2023; 13:3059-3076. [PMID: 37273147 PMCID: PMC10624728 DOI: 10.1007/s13346-023-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Zolmitriptan (ZT) is a potent second generation triptan, commonly administered to alleviate migraine attacks. ZT suffers various limitations; massive hepatic first pass metabolism, P-gp efflux transporters susceptibility, and limited (≈40%) oral bioavailability. Transdermal route of administration could be explored to enhance its bioavailability. A 23.31 full factorial design was constructed to developed twenty-four ZT loaded terpesomes via thin film hydration technique. The influence of drug: phosphatidylcholine ratio, terpene type, terpene concentration and sodium deoxycholate concentration on the characterization of the developed ZT-loaded terpesomes was assessed. Particle size (PS), zeta potential (ZP), ZT entrapment efficiency (EE%), drug loading (DL%) and drug released percentages after 6 h (Q6h) were the selected dependent variables. Further morphological, crystallinity, and in-vivo histopathological studies were conducted for the optimum terpesomes (T6). 99mTc-ZT and 99mTc-ZT-T6 gel were radio-formulated for in-vivo biodistribution studies in mice following transdermal application of 99mTc-ZT-T6 gel, relative to 99mTc-ZT oral solution. T6 terpesomes [comprising ZT and phosphatidylcholine (1:15), cineole (1% w/v) and sodium deoxycholate (0.1% w/v)] were optimum with respect to spherical PS (290.2 nm), ZP (-48.9 mV), EE% (83%), DL% (3.9%) and Q6h (92.2%) with desirability value of 0.85. The safety of the developed T6 terpesomes was verified by the in-vivo histopathological studies. 99mTc-ZT-T6 gel showed maximum brain concentration (5 ± 0.1%ID/ g) with highest brain to blood ratio of 1.92 ± 0.1 at 4 h post transdermal application. Significant improvement of ZT brain relative bioavailability (529%) and high brain targeting efficiency (315%) were revealed with 99mTc-ZT-T6 gel, which confirmed successful ZT delivery to the brain. Terpesomes could be safe, successful systems capable of improving ZT bioavailability with high brain targeting efficiency.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mai M Eltaweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Fatouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
4
|
Ahmed Tawfik M, Eltaweel MM, Farag MM, Shamsel-Din HA, Ibrahim AB. Sonophoresis-assisted transdermal delivery of antimigraine-loaded nanolipomers: Radio-tracking, histopathological assessment and in-vivo biodistribution study. Int J Pharm 2023; 644:123338. [PMID: 37607646 DOI: 10.1016/j.ijpharm.2023.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Migraine is a disabling neurovascular polygenic disorder affecting life quality with escorted socioeconomic encumbrances. Herein, we investigated the consolidated amalgamation of passive lipomer approach alongside active sonophoresis assisted transdermal delivery of zolmitriptan (ZT) using high frequency ultrasound pre-treatment protocol to mitigate migraine attacks. A modified nanoprecipitation technique was utilized to prepare zolmitriptan loaded lipomers (ZTL) adopting 23 factorial design. Three factors were scrutinized namely lipid type, ZT: lipid ratio and ZT: Gantrez® ratio. The prepared systems were characterized regarding particle size, zeta potential, polydispersity index, entrapment efficiency and in-vitro release studies. The best achieved ZTL system was evaluated for ZT- Gantrez® intermolecular interactions, drug crystallinity, morphology, ex-vivo permeation and histopathological examination. Finally, a comparative in-vivo biodistribution study through radiotracking technique using Technetium-99 m was adopted. L2 was the best-achieved ZTL system with respect to spherical particle size (390.7 nm), zeta-potential (-30.8 mV), PDI (0.2), entrapment efficiency (86.2%), controlled release profile, flux (147.13 μg/cm2/hr) and enhancement ratio (5.67). Histopathological studies proved the safety of L2 system upon application on skin. L2 revealed higher brain Cmax (12.21 %ID/g), prolonged brain MRT (8.67 hr), prolonged brain 0.23 hr), significantly high relative bioavailability (2929.36%) and similar brain Tmax (0.5 hr) compared to I.V. route with higher brain/blood ratio. Thus, sonophoresis assisted transdermal delivery of ZTL offers a propitious alterative to alleviate migraine symptoms.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Mai M Eltaweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Michael M Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
5
|
M Elsharkawy F, M Amin M, A Shamsel-Din H, Ibrahim W, Ibrahim AB, Sayed S. Self-Assembling Lecithin-Based Mixed Polymeric Micelles for Nose to Brain Delivery of Clozapine: In-vivo Assessment of Drug Efficacy via Radiobiological Evaluation. Int J Nanomedicine 2023; 18:1577-1595. [PMID: 37007986 PMCID: PMC10065422 DOI: 10.2147/ijn.s403707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Purpose The research objective is to design intranasal brain targeted CLZ loaded lecithin based polymeric micelles (CLZ- LbPM) aiming to improve central systemic CLZ bioavailability. Methods In our study, intranasal CLZ loaded lecithin based polymeric micelles (CLZ- LbPM) were formulated using soya phosphatidyl choline (SPC) and sodium deoxycholate (SDC) with different CLZ:SPC:SDC ratios via thin film hydration technique aiming to enhance drug solubility, bioavailability and nose to brain targeting efficiency. Optimization of the prepared CLZ-LbPM using Design-Expert® software was achieved showing that M6 which composed of (CLZ:SPC: SDC) in respective ratios of 1:3:10 was selected as the optimized formula. The optimized formula was subjected to further evaluation tests as, Differential Scanning Calorimetry (DSC), TEM, in vitro release profile, ex vivo intranasal permeation and in vivo biodistribution. Results The optimized formula with the highest desirability exhibiting (0.845), small particle size (12.23±4.76 nm), Zeta potential of (-38 mV), percent entrapment efficiency of > 90% and percent drug loading of 6.47%. Ex vivo permeation test showed flux value of 27 μg/cm².h and the enhancement ratio was about 3 when compared to the drug suspension, without any histological alteration. The radioiodinated clozapine ([131I] iodo-CLZ) and radioiodinated optimized formula ([131I] iodo-CLZ-LbPM) were formulated in an excellent radioiodination yield more than 95%. In vivo biodistribution studies of [131I] iodo-CLZ-LbPM showed higher brain uptake (7.8%± 0.1%ID/g) for intranasal administration with rapid onset of action (at 0.25 h) than the intravenous formula. Its pharmacokinetic behavior showed relative bioavailability, direct transport percentage from nose to brain and drug targeting efficiency of 170.59%, 83.42% and 117% respectively. Conclusion The intranasal self-assembling lecithin based mixed polymeric micelles could be an encouraging way for CLZ brain targeting.
Collapse
Affiliation(s)
- Fatma M Elsharkawy
- Regulatory Affairs Department, Al Andalous for Pharmaceutical Industries, Giza, Egypt
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Walaa Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Correspondence: Sinar Sayed, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt, Tel +2 01010421543, Email
| |
Collapse
|
6
|
Haemmerich D, Ramajayam KK, Newton DA. Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers (Basel) 2023; 15:cancers15020398. [PMID: 36672347 PMCID: PMC9856714 DOI: 10.3390/cancers15020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based on intravascular triggered release, where drug release occurs within the microvasculature. Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor targeting (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Numerous TSL formulations have been combined with various drugs and hyperthermia devices in preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Correspondence:
| | - Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Unraveling the diagnostic phase of 99mTc-doped iron oxide nanoprobe in sarcoma bearing mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
IAEA Contribution to Nanosized Targeted Radiopharmaceuticals for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14051060. [PMID: 35631646 PMCID: PMC9146346 DOI: 10.3390/pharmaceutics14051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The rapidly growing interest in the application of nanoscience in the future design of radiopharmaceuticals and the development of nanosized radiopharmaceuticals in the late 2000′s, resulted in the creation of a Coordinated Research Project (CRP) by the International Atomic Energy Agency (IAEA) in 2014. This CRP entitled ‘Nanosized delivery systems for radiopharmaceuticals’ involved a team of expert scientist from various member states. This team of scientists worked on a number of cutting-edge areas of nanoscience with a focus on developing well-defined, highly effective and site-specific delivery systems of radiopharmaceuticals. Specifically, focus areas of various teams of scientists comprised of the development of nanoparticles (NPs) based on metals, polymers, and gels, and their conjugation/encapsulation or decoration with various tumor avid ligands such as peptides, folates, and small molecule phytochemicals. The research and development efforts also comprised of developing optimum radiolabeling methods of various nano vectors using diagnostic and therapeutic radionuclides including Tc-99m, Ga-68, Lu-177 and Au-198. Concerted efforts of teams of scientists within this CRP has resulted in the development of various protocols and guidelines on delivery systems of nanoradiopharmaceuticals, training of numerous graduate students/post-doctoral fellows and publications in peer reviewed journals while establishing numerous productive scientific networks in various participating member states. Some of the innovative nanoconstructs were chosen for further preclinical applications—all aimed at ultimate clinical translation for treating human cancer patients. This review article summarizes outcomes of this major international scientific endeavor.
Collapse
|