1
|
Yin W, Zhao TL, Wang YH, Yao QZ, Zhou GT. Mn 3O 4@polyaniline nanocomposite with multiple active sites to capture uranium(VI) and iodide: synthesis, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30130-30143. [PMID: 36427123 DOI: 10.1007/s11356-022-24073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
A major challenge for radioactive wastewater treatment and associated environmental remediation is how to simultaneously remove cationic and anionic radionuclides. Herein, a series of Mn3O4@polyaniline (Mn3O4@PANI) nanocomposites were successfully prepared and used to remove U(VI) and I- from aqueous solution, two highly concomitant species in nuclear pollution settings. Batch adsorption experiments reveal that the component Mn3O4 is predominantly responsible for U(VI) removal, but PANI for I-. The nanocomposite with 24.2 wt% Mn3O4 possesses high removal percentages (> 85%) either for U(VI) or I- over a wide pH range, fast removal kinetics, and excellent adsorption selectivity at high concentrations of competing ions. Benefiting from the contributions of the two components and the high adsorption affinities, the nanocomposite achieves the simultaneous removal to coexisting U(VI) and I-, with a maximum adsorption capacity 102.6 mg/g for U(VI) and 126.1 mg/g for I-. X-ray photoelectron spectroscopy (XPS) results reveal that the U(VI) adsorption occurs via coordination bonding with Mn-O, -NH- , and =N- groups in the nanocomposite, whereas I- adsorption proceeds mainly through I anionic species exchange with Cl- and interactions with π-bonds in PANI, as well as the electrostatic attraction onto Mn3O4. Considering the excellent performance and multiple active sites, the Mn3O4@PANI nanocomposite is promising to remove practical radioactive U(VI) and I-.
Collapse
Affiliation(s)
- Wei Yin
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Tian-Lei Zhao
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Han Wang
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Qi-Zhi Yao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Gen-Tao Zhou
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Comparative Planetology, Hefei, 230026, China.
| |
Collapse
|
2
|
Wang ST, Liu YJ, Zhang CY, Yang F, Fang WH, Zhang J. Cluster-Based Crystalline Materials for Iodine Capture. Chemistry 2023; 29:e202202638. [PMID: 36180419 DOI: 10.1002/chem.202202638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
The treatment of radioactive iodine in nuclear waste has always been a critical issue of social concern. The rational design of targeted and efficient capture materials is of great significance to the sustainable development of the ecological environment. In recent decades, crystalline materials have served as a molecular platform to study the binding process and capture mechanism of iodine molecules, enabling people to understand the interaction between radioactive iodine guests and pores intuitively. Cluster-based crystalline materials, including molecular clusters and cluster-based metal-organic frameworks, are emerging candidates for iodine capture due to their aggregative binding sites, precise structural information, tunable pores/packing patterns, and abundant modifications. Herein, recent progress of different types of cluster materials and cluster-dominated metal-organic porous materials for iodine capture is reviewed. Research prospects, design strategies to improve the affinity for iodine and possible capture mechanisms are discussed.
Collapse
Affiliation(s)
- San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Cheng-Yang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fan Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
3
|
Highly Sensitive Adsorption and Detection of Iodide in Aqueous Solution by a Post-Synthesized Zirconium-Organic Framework. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238547. [PMID: 36500640 PMCID: PMC9738272 DOI: 10.3390/molecules27238547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Effective methods of detection and removal of iodide ions (I-) from radioactive wastewater are urgently needed and developing them remains a great challenge. In this work, an Ag+ decorated stable nano-MOF UiO-66-(COOH)2 was developed for the I- to simultaneously capture and sense in aqueous solution. Due to the uncoordinated carboxylate groups on the UiO-66-(COOH)2 framework, Ag+ was successfully incorporated into the MOF and enhanced the intrinsic fluorescence of MOF. After adding iodide ions, Ag+ would be produced, following the formation of AgI. As a result, Ag+@UiO-66-(COOH)2 can be utilized for the removal of I- in aqueous solution, even in the presence of other common ionic ions (NO2-, NO3-, F-, SO42-). The removal capacity as high as 235.5 mg/g was calculated by Langmuir model; moreover, the fluorescence of Ag+@UiO-66-(COOH)2 gradually decreases with the deposition of AgI, which can be quantitatively depicted by a linear equation. The limit of detection toward I- is calculated to be 0.58 ppm.
Collapse
|
4
|
Iodide removal by a symmetric pulsed current-assisted electrochemical method using bismuth oxide composite electrode. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|