1
|
Naik MUD. Adsorbents for the Uranium Capture from Seawater for a Clean Energy Source and Environmental Safety: A Review. ACS OMEGA 2024; 9:12380-12402. [PMID: 38524451 PMCID: PMC10956418 DOI: 10.1021/acsomega.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024]
Abstract
On the global level, uranium is considered the main nuclear energy source, and its removal from terrestrial ores is enough to last until the end of the current century. Therefore, a major focus is attracted toward the capture of uranium from a sustainable source (seawater). Uranium recovery from seawater has been reported over the last few decades, and recently many efforts have been devoted to the preparation of such adsorbents with higher selectivity and adsorption capacity. The purpose of this review is to report the advancement in adsorbent preparation and modification of porous materials. It also discusses challenges such as adsorbent selectivity, low uranium concentration in seawater, contact time, biofouling, and the solution to the problems necessary to ensure a better adsorption performance of the adsorbent.
Collapse
Affiliation(s)
- Mehraj-ud-din Naik
- Department of Chemical Engineering,
College of Engineering, Jazan University, Jazan 45142, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Liu L, Zhao B, Wu D, Wang X, Yao W, Ma Z, Hou H, Yu S. Rational design of MOF@COF composites with multi-site functional groups for enhanced elimination of U(VI) from aqueous solution. CHEMOSPHERE 2023; 341:140086. [PMID: 37678593 DOI: 10.1016/j.chemosphere.2023.140086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Both environment and human beings were menaced by the widespread application of radioactive uranium, high-performance and effective elimination of uranium from wastewater is of important meaning for development of environmental sustainability in the future. In this study, the water-stable MOF material and the highly crystalline COF were compounded by a mild hydrothermal strategy, which achieved efficient removal of U(VI) through the synergistic effect. The composites showed the characteristics of both COFs and MOFs, which will possess higher stability, larger surface area and faster adsorption efficiency that cannot be carried out by a single component. Batch experiments and characterizations (SEM, TEM, XRD, FT-IR, BET, XPS, etc.) indicated that UiO-66-NH2@LZU1 had more stable and multi-layer pore structure and rich active functional groups. The Langmuir model and the pseudo-second-order kinetics fitting was more suitable for the U(VI) elimination process. The greatest uranium adsorbing capacity of UiO-66-NH2@LZU1 (180.4 mg g-1) was observed to exceed the UiO-66-NH2 (108.8 mg g-1) and COF-LZU1 (65.8 mg g-1), which reached the excellent hybrid effects. Furthermore, FT-IR and XPS analyses confirmed that the most nitrogen-containing group from COF-LZU1 and oxygen-containing group of UiO-66-NH2 could be combined with U(VI). In addition, electrostatic interaction was also a mechanism during the removal process. This work displayed that UiO-66-NH2@LZU1 was a prospective hybrid material for radioactive waste remediation. The compound method and application mentioned in this work had provided a theoretical basis for designing and developing multi-functional composite adsorbents, which contributed to the development of new materials for radioactive wastewater treatment technologies.
Collapse
Affiliation(s)
- Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Bing Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Dedong Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Wen Yao
- School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Zixuan Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Hairui Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
3
|
Cao X, Yu K, Zhang Y, Li N, Wang P, Zhou L, Gong X, Wang H, Yang F, Zhu W, He R. Efficient Strategy for U(VI) Photoreduction: Simultaneous Construction of U(VI) Confinement Sites and Water Oxidation Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1063-1072. [PMID: 36542096 DOI: 10.1021/acsami.2c17849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reduction of hexavalent uranium [U(VI)] by the photocatalytic method opens up a novel way to promote the selectivity, kinetics, and capacity during uranium removal, where organic molecules act as the sacrificial agents. However, the addition of sacrificial agents can cause a secondary environmental pollution and increase the cost. Here, a UiO-66-based photocatalyst (denoted as MnOx/NH2-UiO-66) simultaneously with efficient U(VI) confinement sites and water oxidation sites was successfully developed, achieving excellent U(VI) removal without sacrificial agents. In MnOx/NH2-UiO-66, the amino groups served as efficient U(VI) confinement sites and further decreased the U(VI) reduction potential. Besides, MnOx nanoparticles separated the photogenerated electron-hole pairs and provided water oxidation sites. The U(VI) confinement sites and water oxidation sites jointly promoted the U(VI) photoreduction performance of MnOx/NH2-UiO-66, resulting in the removal ratio of MnOx/NH2-UiO-66 for U(VI) achieving 97.8% in 2 h without hole sacrifice agents. This work not only provides an effective UiO-66-based photocatalyst but also offers a strategy for effective U(VI) photoreduction.
Collapse
Affiliation(s)
- Xin Cao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Yang Zhang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Nan Li
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Peng Wang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Xiang Gong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
- CGN Isotope (Mian yang) Co., Ltd., Mianyang621024, Sichuan, P. R. China
| | - Hongbin Wang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang621900, Sichuan, P. R. China
| | - Fan Yang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Technology, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang621010, Sichuan, P. R. China
| |
Collapse
|
5
|
Bai J, Song Z, Liu L, Zhu X, Gao F, Chaudhari RV. Enhanced transformation of CO 2 over microporous Ce-doped Zr metal-organic frameworks. RSC Adv 2022; 12:26307-26318. [PMID: 36275093 PMCID: PMC9477070 DOI: 10.1039/d2ra02680e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 09/05/2023] Open
Abstract
Metal-organic frameworks (MOF) have been studied extensively for the adsorption and catalytic conversion of CO2. However, previous studies mainly focused on the adsorption capabilities of partially or totally Ce substituted UiO-66, there are few studies focusing on transformation of the structure and catalytic activity of these materials. In this work, a series of Zr/Ce-based MOFs with UiO-66 architecture catalysts were prepared for the conversion of CO2 into value-added dimethyl carbonate (DMC). Owing to the different addition order of the two metals, significantly varied shapes and sizes were observed. Accordingly, the catalytic activity is greatly varied by adding a second metal. The different catalytic activities may arise from the different acid-base properties after Ce doping as well as the morphology and shape changes. Besides, the formation of terminal methoxy (t-OCH3) was found to be the rate limiting step. Finally, the reaction mechanism of CO2 transformation in the presence of a dehydrating agent was proposed.
Collapse
Affiliation(s)
- Juan Bai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Ziwei Song
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Lijuan Liu
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Xu Zhu
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Faming Gao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Raghunath V Chaudhari
- Center for Environmentally Beneficial Catalysis, Department of Chemical & Petroleum Engineering, University of Kansas 1530 W15th Street Lawrence Kansas 66045 USA
| |
Collapse
|
7
|
Wu X, Wei Z, Yang J, Zhang G, Long S, Wang X. Construction of solvent resistance
O‐PASS
@
UiO‐66‐NH
2
/
O‐PASS
composite membrane for methylene blue removal. J Appl Polym Sci 2022. [DOI: 10.1002/app.52332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xibin Wu
- College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
- State Key Laboratory of Polymer Materials Engineering (Sichuan University) Chengdu China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
- State Key Laboratory of Polymer Materials Engineering (Sichuan University) Chengdu China
| | - Gang Zhang
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
- State Key Laboratory of Polymer Materials Engineering (Sichuan University) Chengdu China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| |
Collapse
|