1
|
Ranjbar Safiabad M, Mohammadi P, Tajer-Mohammad-Ghazvini P. Treatment of low-concentration uranium-containing wastewater utilizing Scenedesmus sp. with an emphasis on response surface methodology. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2025; 286:107694. [PMID: 40252384 DOI: 10.1016/j.jenvrad.2025.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
Microalgae possess various mechanisms to mitigate the toxicity of heavy metals. This study focused on the uranium removal potential of Scenedesmus sp. strain MTR 1901 from waters containing low concentrations of uranium contamination. Response surface methodology (RSM) utilizing central composite design through Design Expert software was employed to identify the key parameters and optimize factors such as pH, time, temperature, metal concentration, and biomass concentration in the process. The results revealed that uranium concentration, pH and time are statistically effective in uranium removal process. The removal efficiency improved from 14.36 % to 79.62 % when the pH was enhanced from 4 to 7.97 during the initial times. Additionally, as the uranium concentration increased from 1 mg to 5 mg/l, the removal efficiency declined from 100 % to 32.19 % in alkaline pH conditions. Increasing time from one to 96 h, the removal efficiency was decreased from 76.14 % to 61.24 %. The 1 g of the alga under the optimal condition (C0 = 1.57 mg/l, pH 3.22, M = 1.31 g/l, T = 12.8 °C, Time = 53 h) can remove 1190 μg of uranium with an absorption efficiency of 99.54 %. The findings indicate that strain MTR 1901 is a promising candidate for the phytoremediation of uranium in aquatic environments that are contaminated with low levels of uranium.
Collapse
Affiliation(s)
- Maryam Ranjbar Safiabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | | |
Collapse
|
2
|
Tan JP, Clyde CW, Ng CC, Yeap SK, Yong CY. Advancements in microbial-mediated radioactive waste bioremediation: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 280:107530. [PMID: 39378736 DOI: 10.1016/j.jenvrad.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The global production of radioactive wastes is expected to increase in the coming years as more countries have resorted to adopting nuclear power to decrease their reliance on fossil-fuel-generated energy. Discoveries of remediation methods that can remove radionuclides from radioactive wastes, including those discharged to the environment, are therefore vital to reduce risks-upon-exposure radionuclides posed to humans and wildlife. Among various remediation approaches available, microbe-mediated radionuclide remediation have limited reviews regarding their advances. This review provides an overview of the sources and existing classification of radioactive wastes, followed by a brief introduction to existing radionuclide remediation (physical, chemical, and electrochemical) approaches. Microbe-mediated radionuclide remediation (bacterial, myco-, and phycoremediation) is then extensively discussed. Bacterial remediation involves biological processes like bioreduction, biosorption, and bioprecipitation. Bioreduction involves the reduction of water-soluble, mobile radionuclides to water-insoluble, immobile lower oxidation states by ferric iron-reducing, sulfate-reducing, and certain extremophilic bacteria, and in situ remediation has become possible by adding electron donors to contaminated waters to enrich indigenous iron- and sulfate-reducing bacteria populations. In biosorption, radionuclides are associated with functional groups on the microbial cell surface, followed by getting reduced to immobilized forms or precipitated intracellularly or extracellularly. Myco- and phycoremediation often involve processes like biosorption and bioaccumulation, where the former is influenced by pH and cell concentration. A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis on microbial remediation is also performed. It is suggested that two research directions: genetic engineering of radiation-resistant microorganisms and co-application of microbe-mediated remediation with other remediation methods could potentially result in the discovery of in situ or ex situ microbe-involving radioactive waste remediation applications with high practicability. Finally, a comparison between the strengths and weaknesses of each approach is provided.
Collapse
Affiliation(s)
- Jin Ping Tan
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Christal Winona Clyde
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Imam N, El-Shamy AS, Abdelaziz GS, Belal DM. Influence of the industrial pollutant on water quality, radioactivity levels, and biological communities in Ismailia Canal, Nile River, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26855-26879. [PMID: 38456982 PMCID: PMC11052782 DOI: 10.1007/s11356-024-32672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
In the twenty-first century, numerous forms of pollution have adversely impacted freshwater and the entire aquatic ecosystem. The higher population density in urban areas also contributes to increased releases of substances and thermal contaminants, significantly stressing the ecosystem of industrial companies. This study aimed to assess the potential pressure of industrial and municipal activities on water quality, radioactivity levels, and biological diversity, focusing on the consequences of radionuclides on periphytic diatom communities. Furthermore, the environmental impact of pollutants will be evaluated to monitor the ecological condition of the Ismailia Canal. Chemical analyses employed various instruments and methods to identify and quantify matter, with radionuclide elements measured by gamma spectrometry and diatoms counted and identified by inverted microscopy. Our results revealed that the canal was classified as excellent for irrigation, aquatic life, and drinking water based on FAO, CCME, and EWQS water quality indices, with high nutrient levels at Abu Za'baal fertilizer company. The activity concentration of 226Ra-series, 232Th-series, and 40K in the water and sediment samples for two seasons was within the guideline values, except for a few stations in the zone [B] (the industrial zone). Fertilizer samples (raw material) showed a high value of the 226Ra-series activity. Diatom community structure significantly varied across the different canal locations regarding the presence or absence of industrial activities, with no discernible variations between the study seasons. A specific variety of algal species was found to be predominant at the highest radioactive sites. Redundancy analysis (RDA) showed a significant correlation between parameters (pH, Na, TDS, PO4, SO4, SiO2, K, and CO3), radionuclides, environmental conditions, and the composition of the diatom community, especially in the area affected by industrial discharges. Moreover, the radiological hazard index in water and sediment remained below the maximum for two seasons. This research provides valuable data and information for communities and decision-makers, suggesting the strategic use of phycoremediation as a water biotreatment process to protect the valuable economic resources of the Ismailia Canal.
Collapse
Affiliation(s)
- Noha Imam
- Physics and Geology Lab., Freshwater and Lakes Division, National Institute of Oceanography and Fisheries, 101 Kaser El Aini Street, Cairo, 11516, Egypt.
| | - Amr S El-Shamy
- Chemistry Lab., Freshwater and Lakes Division, National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Ghada S Abdelaziz
- Chemistry Lab., Freshwater and Lakes Division, National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Dalia M Belal
- Hydrobiology Lab., Freshwater and Lakes Division, National Institute of Oceanography and Fisheries, Cairo, Egypt
| |
Collapse
|
4
|
Ighalo JO, Chen Z, Ohoro CR, Oniye M, Igwegbe CA, Elimhingbovo I, Khongthaw B, Dulta K, Yap PS, Anastopoulos I. A review of remediation technologies for uranium-contaminated water. CHEMOSPHERE 2024; 352:141322. [PMID: 38296212 DOI: 10.1016/j.chemosphere.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000 Kazakhstan
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Isaiah Elimhingbovo
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostaki Campus, Arta 47100, Greece
| |
Collapse
|
5
|
Madhogaria B, Banerjee S, Kundu A, Dhak P. Efficacy of new generation biosorbents for the sustainable treatment of antibiotic residues and antibiotic resistance genes from polluted waste effluent. INFECTIOUS MEDICINE 2024; 3:100092. [PMID: 38586544 PMCID: PMC10998275 DOI: 10.1016/j.imj.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption. To prevent additional antibiotic compound pollution, which eventually impacts on the spread of antibiotic resistance, it is crucial to remove antibiotic residues from wastewater. Antibiotic accumulation and antibiotic resistance genes cannot be effectively and efficiently eliminated by conventional sewage treatment plants. Because of their high energy requirements and operating costs, many of the available technologies are not feasible. However, the biosorption method, which uses low-cost biomass as the biosorbent, is an alternative technique to potentially address these problems. An extensive literature survey focusing on developments in the field was conducted using English language electronic databases, such as PubMed, Google Scholar, Pubag, Google books, and ResearchGate, to understand the relative value of the available antibiotic removal methods. The predominant techniques for eliminating antibiotic residues from wastewater were categorized and defined by example. The approaches were contrasted, and the benefits and drawbacks were highlighted. Additionally, we included a few antibiotics whose removal from aquatic environments has been the subject of extensive research. Lastly, a few representative publications were identified that provide specific information on the removal rates attained by each technique. This review provides evidence that biosorption of antibiotic residues from biological waste using natural biosorbent materials is an affordable and effective technique for eliminating antibiotic residues from wastewater.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Sangeeta Banerjee
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
6
|
Xie J, Li D, Wang Y. The bioreduction of U(VI) and Pu(IV): Experimental and thermodynamic studies. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 272:107356. [PMID: 38113757 DOI: 10.1016/j.jenvrad.2023.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
The experimental and thermodynamic bioreduction of U(VI)aq and Pu(IV)am was studied in order to more accurately predict their transport velocities in groundwater and assess the contamination risks to the associated environments. The results obtained in this study emphasize the impact of carbonate-calcium and humic acids at 7.1 and anoxic solutions on the rate and extent of U(VI)aq and Pu(IV)am bioreduction by Shewanella putrefaciens. We found that the bioreduction rate of U(VI)aq became slow in the presence of NaHCO3/CaCl2. The more negative standard redox potentials of the ternary complexes of U(VI)-Ca2+-CO32- accounted for the decreased rate of bioreduction, e.g., [Formula: see text] = -0.6797 V ≪ [Formula: see text] = 0.3862 V. The bioreduction of Pu(IV)am seemed feasible, while humic acids accepted the adequate extracellular electrons secreted by S. putrefaciens, and the redox potential of Eh(HAox/HAred) was lower than Eh(PuO2(am)/Pu3+), e.g., Eh(HAox/HAred) ≦ Eh(PuO2(am)/Pu3+) if humic acids accepted ≧ 7.952 × 10-7 mol of electrons. The standard redox potentials, Eho(PuO2(am)/Pu3+) = 0.9295 V ≫ [Formula: see text] = -0.6797 V, cannot explain the reduction extent of Pu(IV)am (8.9%), which is notably smaller than that of U(VI)aq (74.9%). In fact, the redox potential of Pu(IV)am was distinctly negative under the experimental conditions of trace-level Pu(IV)am (∼2.8 × 10-9 mol/L Pu(IV) if Pu(IV)am was completely dissolved), e.g., Eh(PuO2(am)/Pu3+) = -0.1590 V (α(Pu3+) = 10-10 mol/L, pH = 7.1). Therefore, the chemical factor of Pu3+ activity, leading to a rapid drop in Eh(PuO2(am)/Pu3+) at trace-level Pu(IV)am, was responsible for the relatively small reduction extent of Pu(IV)am.
Collapse
Affiliation(s)
- Jinchuan Xie
- Institute of Military-Civilian Integration Technology, Northwest University of Political Science and Law, Xi'an, Shaanxi, 710122, China.
| | - Dongyan Li
- Institute of Military-Civilian Integration Technology, Northwest University of Political Science and Law, Xi'an, Shaanxi, 710122, China
| | - Yu Wang
- Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi'an, Shaanxi, 710024, China
| |
Collapse
|
7
|
Shen C, Pan J, Chen M, Su M, Chen D, Song G. Statistically and visually analyzing the latest advancements and future trends of uranium removal. ENVIRONMENTAL RESEARCH 2023; 239:117280. [PMID: 37793586 DOI: 10.1016/j.envres.2023.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Uranium contamination and remediation is a very important environmental research area. Removing radioactive and toxic uranium from contaminated media requires fundamental knowledge of targets and materials. To explore the-State-of-the-Art in uranium contamination control, we employed a statistical tool called CiteSpace to visualize and statistically analyze 4203 peer-reviewed papers on uranium treatment published between 2008 and 2022. The primary content presentations of visual analysis were co-authorships, co-citations, keyword co-occurrence analysis with cluster analysis, which could offer purposeful information of research hots and trends in the field of uranium removal. The statistical analysis results indicated that studies on uranium removal have focused on adsorption of uranium from aqueous solution. From 2008 to 2022, biochar and biological treatment were firstly used to sequester uranium, then adsorption for uranium removal dominates with adsorbents of graphene oxide, primary nanofiber magnetic polymers and metal-organic frameworks (MOFs). In recent years, photocatalysts and metal-organic frameworks are expected to be two of the most popular research topics. In addition, we further highlighted the characteristics and applications of MOFs and GOs in uranium removal. Overall, a statistical review was proposed to visualize and summarize the knowledge and research trends regarding uranium treatment.
Collapse
Affiliation(s)
- Congjie Shen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiaqi Pan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Miaoling Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Gang Song
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Hamed A, Orabi A, Salem H, Ismaiel D, Saad G, Abdelhamid I, Elwahy A, Elsabee M. An effective uranium removal using diversified synthesized cross-linked chitosan bis-aldehyde Schiff base derivatives from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106790-106811. [PMID: 36334198 PMCID: PMC10611627 DOI: 10.1007/s11356-022-23856-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Three new cross-linked chitosan derivatives were yielded through intensification of chitosan with diverse types of bis-aldehydes. The prepared cross-linked chitosan was characterized by FTIR, 1H NMR, XRD, and TGA techniques. TGA indicated an improvement in thermal stability of the cross-linked chitosan compared with pure chitosan. Batch adsorption experiments showed that the three novel cross-linked chitosan bis-aldehyde derivatives possessed good adsorption capacity against U(VI) in the order of BFPA > BFB > BODB (adsorption capacity of the three adsorbents for U(VI) reaches 142, 124, and 114 mg/g respectively) and the adsorption isotherm and kinetic were well described by the Langmuir and the pseudo-second-order kinetic model, respectively. In addition, the prepared cross-linked chitosan bis-aldehyde derivatives were examined as U(VI) catcher from waste solutions.
Collapse
Affiliation(s)
- Amira Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Orabi
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt.
| | - Hend Salem
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Doaa Ismaiel
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Gamal Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ismail Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Elwahy
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Maher Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| |
Collapse
|
9
|
Xie G, Chen H, Mao P, Feng G. Equilibrium, kinetics and thermodynamics of biosorption of U(VI) by Jonesia quinghaiensis strain ZFSY-01 isolated from the wastewater of a uranium mine. JOURNAL OF WATER AND HEALTH 2023; 21:1086-1097. [PMID: 37632383 PMCID: wh_2023_108 DOI: 10.2166/wh.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
The adsorption ability of a native Jonesia quinghaiensis strain ZFSY-01, a microorganism isolated from uranium tailing wastewater, to U(VI) in wastewater under different conditions was studied in this work. The results showed that 391.5 mg U/g and 78.3% of adsorption capacity and efficiency were achieved under an optimum adsorption condition, respectively. Especially, the adsorption capacity of this strain reached the maximum (Q=788.9 mg U/g) under 100 mg/L of strain dosage. Simultaneously, the linear regression coefficients for the used isothermal sorption model indicate that the biosorption process is compatible with the Freundlich isotherm, the Temkin isotherm and the Halsey isotherm model. Based on the fitted kinetic parameters, the data from the experiments fit well with models of pseudo-second-order kinetics and intraparticle diffusion, suggesting that the strain ZFSY-01 immobilized U(VI) by physical and chemical adsorption. In addition, thermodynamic parameters demonstrated that the sequestration of U(VI) by the strain is spontaneous and endothermic. Based on the above analysis, strain ZFSY-01 can effectively remove U(VI) ions from high- or low-concentration uranium-containing wastewater and is expected to become a promising biological adsorbent.
Collapse
Affiliation(s)
- Gen Xie
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China E-mail:
| | - Henglei Chen
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Peihong Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Guangwen Feng
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, China
| |
Collapse
|
10
|
Dhanya V, Rajesh N. A cradle to cradle approach towards remediation of uranium from water using carbonized arecanut husk fiber. RSC Adv 2023; 13:4394-4406. [PMID: 36744280 PMCID: PMC9890654 DOI: 10.1039/d2ra08333g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Sustainable materials for remediation of pollutants from water is the need of the hour. In this study two carbonaceous adsorbents prepared through hydrothermal carbonisation and pyrolysis from arecanut husk fiber, an agricultural waste material were used for the adsorption of uranium from water. Batch adsorption data as interpreted using the Langmuir model showed adsorption capacities of 250 mg g-1 and 200 mg g-1 respectively at pH 6 for the hydrochar (AHFC) and the pyrochar (AHFT) exceeding that reported for most of the unmodified biochars. The adsorption followed pseudo-second order kinetics and was exothermic in nature. The high selectivity and excellent removal efficiencies on application to environmental ground water samples and good regeneration capacity make these sorbents promising eco-friendly materials for uranium remediation from water.
Collapse
Affiliation(s)
- V Dhanya
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| | - N Rajesh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| |
Collapse
|
11
|
Wang S, Yang H, Che F, Huang W, Yang D. Removal efficacy of fly ash composite filler on tailwater nitrogen and phosphorus and its application in constructed wetlands. Front Chem 2023; 11:1160489. [PMID: 37153523 PMCID: PMC10155834 DOI: 10.3389/fchem.2023.1160489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Constructed wetlands (CWs) have been widely used in tailwater treatment. However, it is difficult to achieve considerable removal efficiency of nitrogen and phosphorus in tailwater solely by CWs-an efficient green wetland filler is also important. This study investigated 160 domestic sewage treatment facilities (DSTFs) in rural areas from two urban areas in Jiaxing for TP and NH3-N and found that TP and NH3-N concentrations in rural domestic sewage (RDS) in this plain river network are still high. Therefore, we selected a new synthetic filler (FA-SFe) to enhance nitrogen and phosphorus reduction, and we discuss the importance of filler in constructed wetlands. Experiments revealed the adsorption capacity of the new filler: the maximum adsorption amounts of TP and NH3-N reached 0.47 g m-2 d-1 and 0.91 g m-2 d-1, respectively. The application potential of FA-SFe was verified in actual wastewater treatment, with the removal rates of ammonia nitrogen and TP reaching 71.3% and 62.7%, respectively. This study provides a promising pathway for nitrogen and phosphorus removal from rural tailwaters.
Collapse
Affiliation(s)
- Shuhang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Haoran Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Feifei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Environment and Ecology, Chinese Research Academy of Environmental Sciences, Beijing, China
- *Correspondence: Dianhai Yang, ; Wei Huang,
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- *Correspondence: Dianhai Yang, ; Wei Huang,
| |
Collapse
|
12
|
He Z, Dong L, Zhang K, Zhang D, Pan X. Lactic acid bacteria induce phosphate recrystallization for the in situ remediation of uranium-contaminated topsoil: Principle and application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120277. [PMID: 36167164 DOI: 10.1016/j.envpol.2022.120277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Uranium (U) contamination often occurs in the topsoil (arable layer), and is a serious threat to crop growth. However, conventional microbial reduction methods are sensitive to oxygen and cannot be used to treat aerobic topsoils. In this study, phosphate-solubilizing microorganisms (PSM) were isolated from U-contaminated topsoil and used for soil remediation. Microbial metabolites and products were analyzed, and the pathways and mechanisms of PSM immobilization were revealed. The results showed that strain PSM8 had the highest phosphate-solubilizing capacity (dissolved P was 208 ± 5 mg/L) and the highest U removal rate (97.3 ± 0.1%). Multi-technical analyses indicated that bacterial surface functional groups adsorbed (UO2)2+ ions on the cell surface, glycolysis produced 3-10 mg/L of lactic acid (pH 4.7-6.0), and lactic acid solubilized Ca3(PO4)2 to form stable chernikovite (a type of uranyl phosphate) on the cell surface. The coupled application of Ca3(PO4)2 and strain PSM8 significantly reduced the bioavailability of soil U (62 ± 11%), converting U from the exchangeable to the residual phase and P from the steady to the available form. In addition, pot experiments showed that soil remediation promoted crop growth and significantly reduced U uptake and toxicity to photosynthetic systems. These findings demonstrate that PSM and Ca3(PO4)2 are good coupled fertilizers for U-contaminated agricultural soil.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Keqing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|