1
|
Li X, Shao K, Xu G, Xia M, Liu X, Shang Z, Fan F, Dou J. A Prussian blue analog-based copper-aluminum layered double hydroxide for cesium removal from water: fabrication, density functional theory-based molecular modeling, and the adsorption mechanism. Phys Chem Chem Phys 2024; 26:1113-1124. [PMID: 38098463 DOI: 10.1039/d3cp03879c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A new type of adsorbent, a Prussian blue analog-based copper-aluminum layered double hydroxide (PBA@CuAl-LDH), was successfully synthesized using a one-step method for the removal of radioactive Cs+ from wastewater. The adsorption performance, characteristics and the underlying adsorption mechanism of PBA@CuAl-LDH were systematically examined. The results showed that PBA@CuAl-LDH exhibited excellent adsorption performance, with a maximum adsorption capacity of 109.2 mg g-1. Over 85% of PBA@CuAl-LDH can be recycled, and the material exhibited only a 6.6% loss in adsorption performance. The adsorption process was well-fitted using the pseudo-second-order kinetic model and the Freundlich isotherm model, revealing the surface heterogeneity of the composite adsorbent. A molecular model of PBA@CuAl-LDH was constructed by combining density functional theory and multiple instrumental characterization techniques. Our results indicate that PBA crystals can be generated between layers and on the surface. Ion exchange was revealed as the main adsorption mechanism of Cs+ by PBA@CuAl-LDH. Specifically, the interstitial spaces of the PBA crystals generated between the layers and on the surface played an important role in ion exchange. These findings provide concrete theoretical support for radioactive pollution control and have significant value in directing the fabrication of cesium removal materials and their future engineering application.
Collapse
Affiliation(s)
- Xindai Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
- Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Kexin Shao
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
- Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
- Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| | - Meng Xia
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xinyao Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zhaorong Shang
- Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, P. R. China.
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
- Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
2
|
Li X, Xu G, Xia M, Liu X, Fan F, Dou J. Research on the remediation of cesium pollution by adsorption: Insights from bibliometric analysis. CHEMOSPHERE 2022; 308:136445. [PMID: 36113663 DOI: 10.1016/j.chemosphere.2022.136445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
While nuclear energy with zero carbon emissions will continue to occupy an indispensable position in future scenarios for power generation, the proper disposal of nuclear waste is still highly challenging in many countries. Adsorption is currently one of the primary methods used for removal of cesium from wastewater. However, no available literature has systematically summarized advances and outlooks on the adsorptive removal of cesium, and research issues such as relevant adsorption mechanisms remain largely unexplored. In this study, a bibliometric analysis was used to quantitatively analyze 10141 publications in the Web of Science Core Collection that were published from 1900 to 2022. Current publication trends and active countries, most influential authors and institutions, journal distribution, and research hotspots and trends were reviewed and summarized. The results for the conceptual structure and evolution of investigations in this field showed three distinct periods of rapid development in recent decades. The first period concerned the scope, degree, and influences of pollution by cesium and the development of natural adsorbents. The second period included the exploration and verification of adsorption mechanisms, the fabrication and optimization of new materials, and the application of density functional theory for chemical calculations. The third period involved the development of more advanced biodegradable, nanoscale and synthetic materials with great potential for use as adsorbents as well as advances in engineering applications. Notably, the study showed that it is necessary to further enhance application-driven laboratory investigations. Future directions for research were proposed, such as the investigation of complex adsorption mechanisms, development of new materials, and engineering applications of materials developed in the laboratory. The findings will provide valuable insights and serve as a reference for researchers and policymakers as they address the adsorptive remediation of cases of pollution by cesium.
Collapse
Affiliation(s)
- Xindai Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Meng Xia
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Xinyao Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China; Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|