1
|
White B, Huh I, Brooks CL. Structure of a V HH isolated from a naïve phage display library. BMC Res Notes 2019; 12:154. [PMID: 30890176 PMCID: PMC6425610 DOI: 10.1186/s13104-019-4197-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To determine the X-ray structure and biophysical properties of a Camelid VHH isolated from a naïve phage display library. RESULTS Single domain antibodies (VHH) derived from the unique immune system of the Camelidae family have gained traction as useful tools for biotechnology as well as a source of potentially novel therapeutics. Here we report the structure and biophysical characterization of a VHH originally isolated from a naïve camelid phage display library. VHH R419 has a melting temperate of 66 °C and was found to be a monomer in solution. The protein crystallized in space group P6522 and the structure was solved by molecular replacement to a resolution of 1.5 Å. The structure revealed a flat paratope with CDR loops that could be classified into existing canonical loop structures. A combination of high expression yield, stability and rapid crystallization might make R419 into a candidate scaffold for CDR grafting and homology modeling.
Collapse
Affiliation(s)
- Brandy White
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Ian Huh
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Cory L Brooks
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA.
| |
Collapse
|
2
|
Movahedin M, Brooks TM, Supekar NT, Gokanapudi N, Boons GJ, Brooks CL. Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology 2018; 27:677-687. [PMID: 28025250 DOI: 10.1093/glycob/cww131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
In cancer cells, the glycoprotein Mucin 1 (MUC1) undergoes abnormal, truncated glycosylation. The truncated glycosylation exposes cryptic peptide epitopes that can be recognized by antibodies. Since these immunogenic regions are cancer specific, they represent ideal targets for therapeutic antibodies. We investigated the role of tumor-specific glycosylation on antigen recognition by the therapeutic antibody AR20.5. We explored the affinity of AR20.5 to a synthetic cancer-specific MUC1 glycopeptide and peptide. The antibody bound to the glycopeptide with an order of magnitude stronger affinity than the naked peptide. Given these results, we postulated that AR20.5 must specifically bind the carbohydrate as well as the peptide. Using X-ray crystallography, we examined this hypothesis by determining the structure of AR20.5 in complex with both peptide and glycopeptide. Surprisingly, the structure revealed that the carbohydrate did not form any specific polar contacts with the antibody. The high affinity of AR20.5 for the glycopeptide and the lack of specific binding contacts support a hypothesis that glycosylation of MUC1 stabilizes an extended bioactive conformation of the peptide recognized by the antibody. Since high affinity binding of AR20.5 to the MUC1 glycopeptide may not driven by specific antibody-antigen contacts, but rather evidence suggests that glycosylation alters the conformational equilibrium of the antigen, which allows the antibody to select the correct conformation. This study suggests a novel mechanism of antibody-antigen interaction and also suggests that glycosylation of MUC1 is important for the generation of high affinity therapeutic antibodies.
Collapse
Affiliation(s)
- Mohammadreza Movahedin
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Teresa M Brooks
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Nitin T Supekar
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA 30602, USA.,Department of Chemistry, University of Georgia, 140 Cedar street, Athens, GA 30602, USA
| | - Naveen Gokanapudi
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA 30602, USA.,Department of Chemistry, University of Georgia, 140 Cedar street, Athens, GA 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Cory L Brooks
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| |
Collapse
|
3
|
Krojer T, Talon R, Pearce N, Collins P, Douangamath A, Brandao-Neto J, Dias A, Marsden B, von Delft F. The XChemExplorer graphical workflow tool for routine or large-scale protein-ligand structure determination. Acta Crystallogr D Struct Biol 2017; 73:267-278. [PMID: 28291762 PMCID: PMC5349439 DOI: 10.1107/s2059798316020234] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 11/11/2022] Open
Abstract
XChemExplorer (XCE) is a data-management and workflow tool to support large-scale simultaneous analysis of protein-ligand complexes during structure-based ligand discovery (SBLD). The user interfaces of established crystallographic software packages such as CCP4 [Winn et al. (2011), Acta Cryst. D67, 235-242] or PHENIX [Adams et al. (2010), Acta Cryst. D66, 213-221] have entrenched the paradigm that a `project' is concerned with solving one structure. This does not hold for SBLD, where many almost identical structures need to be solved and analysed quickly in one batch of work. Functionality to track progress and annotate structures is essential. XCE provides an intuitive graphical user interface which guides the user from data processing, initial map calculation, ligand identification and refinement up until data dissemination. It provides multiple entry points depending on the need of each project, enables batch processing of multiple data sets and records metadata, progress and annotations in an SQLite database. XCE is freely available and works on any Linux and Mac OS X system, and the only dependency is to have the latest version of CCP4 installed. The design and usage of this tool are described here, and its usefulness is demonstrated in the context of fragment-screening campaigns at the Diamond Light Source. It is routinely used to analyse projects comprising 1000 data sets or more, and therefore scales well to even very large ligand-design projects.
Collapse
Affiliation(s)
- Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Romain Talon
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Nicholas Pearce
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Patrick Collins
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, England
| | - Alice Douangamath
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, England
| | - Jose Brandao-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, England
| | - Alexandre Dias
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, England
| | - Brian Marsden
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, England
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, England
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, England
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, England
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
4
|
Stiers KM, Lee CB, Nix JC, Tanner JJ, Beamer LJ. Synchrotron-based macromolecular crystallography module for an undergraduate biochemistry laboratory course. J Appl Crystallogr 2016; 49:2235-2243. [PMID: 27980518 PMCID: PMC5140000 DOI: 10.1107/s1600576716016800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/19/2016] [Indexed: 04/18/2023] Open
Abstract
This paper describes the introduction of synchrotron-based macromolecular crystallography (MX) into an undergraduate laboratory class. An introductory 2 week experimental module on MX, consisting of four laboratory sessions and two classroom lectures, was incorporated into a senior-level biochemistry class focused on a survey of biochemical techniques, including the experimental characterization of proteins. Students purified recombinant protein samples, set up crystallization plates and flash-cooled crystals for shipping to a synchrotron. Students then collected X-ray diffraction data sets from their crystals via the remote interface of the Molecular Biology Consortium beamline (4.2.2) at the Advanced Light Source in Berkeley, CA, USA. Processed diffraction data sets were transferred back to the laboratory and used in conjunction with partial protein models provided to the students for refinement and model building. The laboratory component was supplemented by up to 2 h of lectures by faculty with expertise in MX. This module can be easily adapted for implementation into other similar undergraduate classes, assuming the availability of local crystallographic expertise and access to remote data collection at a synchrotron source.
Collapse
Affiliation(s)
- Kyle M. Stiers
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Christopher B. Lee
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Jay C. Nix
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John J. Tanner
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Lesa J. Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Smirnova E, Kwan JJ, Siu R, Gao X, Zoidl G, Demeler B, Saridakis V, Donaldson LW. A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein. Cell Commun Signal 2016; 14:17. [PMID: 27549312 PMCID: PMC4994250 DOI: 10.1186/s12964-016-0140-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions. Results We demonstrate that the crystal structure of the Sterile Alpha Motif (SAM) domain tandem (SAM1-SAM2) oligomer from CASKIN2 is different than CASKIN1, with the minimal repeating unit being a dimer, rather than a monomer. Analytical ultracentrifugation sedimentation velocity methods revealed differences in monomer/dimer equilibria across a range of concentrations and ionic strengths for the wild type CASKIN2 SAM tandem and a structure-directed double mutant that could not oligomerize. Further distinguishing CASKIN2 from CASKIN1, EGFP-tagged SAM tandem proteins expressed in Neuro2a cells produced punctae that were distinct both in shape and size. Conclusions This study illustrates a new way in which neuronal SAM domains can assemble into large macromolecular assemblies that might concentrate and amplify synaptic responses. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0140-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Jamie J Kwan
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Ryan Siu
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Xin Gao
- Division of Computer, Computational Bioscience Research Center, Electrical and Mathematical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Georg Zoidl
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Borries Demeler
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7760 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Vivian Saridakis
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Logan W Donaldson
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
6
|
Abstract
XDSAPPis an expert system and graphical user interface (GUI) for the automated processing of diffraction images using theXDSprogram suite and other programs. The latest major update and the extension of the program are presented here. The update includes new features, as well as improvements in the GUI and the underlying decision-making system.XDSAPPis freely available for academic users.
Collapse
|
7
|
Russi S, Song J, McPhillips SE, Cohen AE. The Stanford Automated Mounter: pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines. J Appl Crystallogr 2016; 49:622-626. [PMID: 27047309 PMCID: PMC4815877 DOI: 10.1107/s1600576716000649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/13/2016] [Indexed: 12/02/2022] Open
Abstract
The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. Sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.
Collapse
Affiliation(s)
- Silvia Russi
- Stanford Synchrotron Radiation Lightsource / SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 99, Menlo Park, California 94025, USA
| | - Jinhu Song
- Stanford Synchrotron Radiation Lightsource / SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 99, Menlo Park, California 94025, USA
| | - Scott E. McPhillips
- Stanford Synchrotron Radiation Lightsource / SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 99, Menlo Park, California 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource / SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 99, Menlo Park, California 94025, USA
| |
Collapse
|
8
|
Anzar M, Grochulski P, Bonnet B. Synchrotron X-ray diffraction to detect glass or ice formation in the vitrified bovine cumulus-oocyte complexes and morulae. PLoS One 2014; 9:e114801. [PMID: 25536435 PMCID: PMC4275205 DOI: 10.1371/journal.pone.0114801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/27/2014] [Indexed: 11/22/2022] Open
Abstract
Vitrification of bovine cumulus-oocyte complexes (COCs) is not as successful as bovine embryos, due to oocyte's complex structure and chilling sensitivity. Synchrotron X-ray diffraction (SXRD), a powerful method to study crystal structure and phase changes, was used to detect the glass or ice formation in water, tissue culture medium (TCM)-199, vitrification solution 2 (VS2), and vitrified bovine COCs and morulae. Data revealed Debye's rings and peaks associated with the hexagonal ice crystals at 3.897, 3.635, 3.427, 2.610, 2.241, 1.912 and 1.878 Å in both water and TCM-199, whereas VS2 showed amorphous (glassy) appearance, at 102K (−171°C). An additional peak of sodium phosphate monobasic hydrate (NaH2PO4.H2O) crystals was observed at 2.064 Å in TCM-199 only. All ice and NaH2PO4.H2O peaks were detected in the non-vitrified (control) and vitrified COCs, except two ice peaks (3.145 and 2.655 Å) were absent in the vitrified COCs. The intensities of majority of ice peaks did not differ between the non-vitrified and vitrified COCs. The non-vitrified bovine morulae in TCM-199 demonstrated all ice- and NaH2PO4.H2O-associated Debye's rings and peaks, found in TCM-199 alone. There was no Debye's ring present in the vitrified morulae. In conclusion, SXRD is a powerful method to confirm the vitrifiability of a solution and to detect the glass or ice formation in vitrified cells and tissues. The vitrified bovine COCs exhibited the hexagonal ice crystals instead of glass formation whereas the bovine morulae underwent a typical vitrification.
Collapse
Affiliation(s)
- Muhammad Anzar
- Cryobiology Lab, Canadian Animal Genetic Resource Program, Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | | | | |
Collapse
|
9
|
Echols N, Moriarty NW, Klei HE, Afonine PV, Bunkóczi G, Headd JJ, McCoy AJ, Oeffner RD, Read RJ, Terwilliger TC, Adams PD. Automating crystallographic structure solution and refinement of protein-ligand complexes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:144-54. [PMID: 24419387 PMCID: PMC3919266 DOI: 10.1107/s139900471302748x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
Abstract
High-throughput drug-discovery and mechanistic studies often require the determination of multiple related crystal structures that only differ in the bound ligands, point mutations in the protein sequence and minor conformational changes. If performed manually, solution and refinement requires extensive repetition of the same tasks for each structure. To accelerate this process and minimize manual effort, a pipeline encompassing all stages of ligand building and refinement, starting from integrated and scaled diffraction intensities, has been implemented in Phenix. The resulting system is able to successfully solve and refine large collections of structures in parallel without extensive user intervention prior to the final stages of model completion and validation.
Collapse
Affiliation(s)
- Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Nigel W. Moriarty
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Herbert E. Klei
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Pavel V. Afonine
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Gábor Bunkóczi
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Jeffrey J. Headd
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Airlie J. McCoy
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Robert D. Oeffner
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Randy J. Read
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | | | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720-1762, USA
| |
Collapse
|
10
|
Cotelesage JJH, Grochulski P, Pickering IJ, George GN, Fodje MN. X-ray absorption spectroscopy at a protein crystallography facility: the Canadian Light Source beamline 08B1-1. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:887-891. [PMID: 23093746 DOI: 10.1107/s090904951204023x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/22/2012] [Indexed: 06/01/2023]
Abstract
It is now possible to perform X-ray absorption spectroscopy (XAS) on metalloprotein crystals at the Canadian Macromolecular Crystallography Facility bend magnet (CMCF-BM) beamline (08B1-1) at the Canadian Light Source. The recent addition of a four-element fluorescence detector allows users to acquire data suitable for X-ray absorption near-edge structure and extended X-ray absorption fine-structure based studies by monitoring fluorescence. CMCF beamline users who wish to supplement their diffraction data with XAS can do so with virtually no additional sample preparation. XAS data collection is integrated with the established Mx Data Collector software package used to collect diffraction data. Mainstream XAS data-processing software packages are available for the users; assistance with data processing and interpretation by staff is also available upon request.
Collapse
Affiliation(s)
- Julien J H Cotelesage
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | | | |
Collapse
|