1
|
Spudich JA. One must reconstitute the functions of interest from purified proteins. Front Physiol 2024; 15:1390186. [PMID: 38827995 PMCID: PMC11140241 DOI: 10.3389/fphys.2024.1390186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
I am often asked by students and younger colleagues and now by the editors of this issue to tell the history of the development of the in vitro motility assay and the dual-beam single-molecule laser trap assay for myosin-driven actin filament movement, used widely as key assays for understanding how both muscle and nonmuscle myosin molecular motors work. As for all discoveries, the history of the development of the myosin assays involves many people who are not authors of the final publications, but without whom the assays would not have been developed as they are. Also, early experiences shape how one develops ideas and experiments, and influence future discoveries in major ways. I am pleased here to trace my own path and acknowledge the many individuals involved and my early science experiences that led to the work I and my students, postdoctoral fellows, and sabbatical visitors did to develop these assays. Mentors are too often overlooked in historical descriptions of discoveries, and my story starts with those who mentored me.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility. mSphere 2021; 6:6/3/e00823-20. [PMID: 34011689 PMCID: PMC8265671 DOI: 10.1128/msphere.00823-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is a widespread apicomplexan parasite that causes severe disease in immunocompromised individuals and the developing fetus. Like other apicomplexans, T. gondii uses an unusual form of substrate-dependent gliding motility to invade cells of its hosts and to disseminate throughout the body during infection. It is well established that a myosin motor consisting of a class XIVa heavy chain (TgMyoA) and two light chains (TgMLC1 and TgELC1/2) plays an important role in parasite motility. The ability of the motor to generate force at the parasite periphery is thought to be reliant upon its anchoring and immobilization within a peripheral membrane-bound compartment, the inner membrane complex (IMC). The motor does not insert into the IMC directly; rather, this interaction is believed to be mediated by the binding of TgMLC1 to the IMC-anchored protein, TgGAP45. Therefore, the binding of TgMLC1 to TgGAP45 is considered a key element in the force transduction machinery of the parasite. TgMLC1 is palmitoylated, and we show here that palmitoylation occurs on two N-terminal cysteine residues, C8 and C11. Mutations that block TgMLC1 palmitoylation completely abrogate the binding of TgMLC1 to TgGAP45. Surprisingly, the loss of TgMLC1 binding to TgGAP45 in these mutant parasites has little effect on their ability to initiate or sustain movement. These results question a key tenet of the current model of apicomplexan motility and suggest that our understanding of gliding motility in this important group of human and animal pathogens is not yet complete. IMPORTANCE Gliding motility plays a central role in the life cycle of T. gondii and other apicomplexan parasites. The myosin motor thought to power motility is essential for virulence but distinctly different from the myosins found in humans. Consequently, an understanding of the mechanism(s) underlying parasite motility and the role played by this unusual myosin may reveal points of vulnerability that can be targeted for disease prevention or treatment. We show here that mutations that uncouple the motor from what is thought to be a key structural component of the motility machinery have little impact on parasite motility. This finding runs counter to predictions of the current, widely held “linear motor” model of motility, highlighting the need for further studies to fully understand how apicomplexan parasites generate the forces necessary to move into, out of, and between cells of the hosts they infect.
Collapse
|
3
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
4
|
An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics. Proc Natl Acad Sci U S A 2018; 115:6213-6218. [PMID: 29844196 DOI: 10.1073/pnas.1711512115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins form a class of actin-based, ATPase motor proteins that mediate important cellular functions such as cargo transport and cell motility. Their functional cycle involves two large-scale swings of the lever arm: the force-generating powerstroke, which takes place on actin, and the recovery stroke during which the lever arm is reprimed into an armed configuration. Previous analyses of the prerecovery (postrigor) and postrecovery (prepowerstroke) states predicted that closure of switch II in the ATP binding site precedes the movement of the converter and the lever arm. Here, we report on a crystal structure of myosin VI, called pretransition state (PTS), which was solved at 2.2 Å resolution. Structural analysis and all-atom molecular dynamics simulations are consistent with PTS being an intermediate along the recovery stroke, where the Relay/SH1 elements adopt a postrecovery conformation, and switch II remains open. In this state, the converter appears to be largely uncoupled from the motor domain and explores an ensemble of partially reprimed configurations through extensive, reversible fluctuations. Moreover, we found that the free energy cost of hydrogen-bonding switch II to ATP is lowered by more than 10 kcal/mol compared with the prerecovery state. These results support the conclusion that closing of switch II does not initiate the recovery stroke transition in myosin VI. Rather, they suggest a mechanism in which lever arm repriming would be mostly driven by thermal fluctuations and eventually stabilized by the switch II interaction with the nucleotide in a ratchet-like fashion.
Collapse
|
5
|
Bookwalter CS, Tay CL, McCrorie R, Previs MJ, Lu H, Krementsova EB, Fagnant PM, Baum J, Trybus KM. Reconstitution of the core of the malaria parasite glideosome with recombinant Plasmodium class XIV myosin A and Plasmodium actin. J Biol Chem 2017; 292:19290-19303. [PMID: 28978649 PMCID: PMC5702669 DOI: 10.1074/jbc.m117.813972] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Indexed: 11/08/2022] Open
Abstract
Motility of the apicomplexan malaria parasite Plasmodium falciparum is enabled by a multiprotein glideosome complex, whose core is the class XIV myosin motor, PfMyoA, and a divergent Plasmodium actin (PfAct1). Parasite motility is necessary for host-cell invasion and virulence, but studying its molecular basis has been hampered by unavailability of sufficient amounts of PfMyoA. Here, we expressed milligram quantities of functional full-length PfMyoA with the baculovirus/Sf9 cell expression system, which required a UCS (UNC-45/CRO1/She4p) family myosin chaperone from Plasmodium spp. In addition to the known light chain myosin tail interacting protein (MTIP), we identified an essential light chain (PfELC) that co-purified with PfMyoA isolated from parasite lysates. The speed at which PfMyoA moved actin was fastest with both light chains bound, consistent with the light chain–binding domain acting as a lever arm to amplify nucleotide-dependent motions in the motor domain. Surprisingly, PfELC binding to the heavy chain required that MTIP also be bound to the heavy chain, unlike MTIP that bound the heavy chain independently of PfELC. Neither the presence of calcium nor deletion of the MTIP N-terminal extension changed the speed of actin movement. Of note, PfMyoA moved filaments formed from Sf9 cell–expressed PfAct1 at the same speed as skeletal muscle actin. Duty ratio estimates suggested that as few as nine motors can power actin movement at maximal speed, a feature that may be necessitated by the dynamic nature of Plasmodium actin filaments in the parasite. In summary, we have reconstituted the essential core of the glideosome, enabling drug targeting of both of its core components to inhibit parasite invasion.
Collapse
Affiliation(s)
- Carol S Bookwalter
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Chwen L Tay
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Rama McCrorie
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Michael J Previs
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Hailong Lu
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Elena B Krementsova
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Patricia M Fagnant
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Jake Baum
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Kathleen M Trybus
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| |
Collapse
|
6
|
Tang W, Blair CA, Walton SD, Málnási-Csizmadia A, Campbell KS, Yengo CM. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels. Front Physiol 2017; 7:659. [PMID: 28119616 PMCID: PMC5220080 DOI: 10.3389/fphys.2016.00659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation.
Collapse
Affiliation(s)
- Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA, USA
| | - Cheavar A Blair
- Department of Physiology, University of Kentucky Lexington, KY, USA
| | - Shane D Walton
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA, USA
| | | | - Kenneth S Campbell
- Department of Physiology, University of KentuckyLexington, KY, USA; Division of Cardiovascular Medicine, University of KentuckyLexington, KY, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
7
|
Vandenboom R. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Compr Physiol 2016; 7:171-212. [PMID: 28135003 DOI: 10.1002/cphy.c150044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
8
|
Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking. Proc Natl Acad Sci U S A 2014; 111:12390-5. [PMID: 25114250 DOI: 10.1073/pnas.1409459111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin-specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end-directed motor that moves actin filaments in a gliding assay (∼ 430 nm · s(-1) at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (k(cat) ∼ 6 s(-1)) was similar to the actin-detachment rate (k(det) = 6.2 s(-1)) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells.
Collapse
|
9
|
Llinas P, Pylypenko O, Isabet T, Mukherjea M, Sweeney HL, Houdusse AM. How myosin motors power cellular functions: an exciting journey from structure to function: based on a lecture delivered at the 34th FEBS Congress in Prague, Czech Republic, July 2009. FEBS J 2012; 279:551-62. [PMID: 22171985 PMCID: PMC3269445 DOI: 10.1111/j.1742-4658.2011.08449.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular motors such as myosins are allosteric enzymes that power essential motility functions in the cell. Structural biology is an important tool for deciphering how these motors work. Myosins produce force upon the actin-driven conformational changes controlling the sequential release of the hydrolysis products of ATP (Pi followed by ADP). These conformational changes are amplified by a 'lever arm', which includes the region of the motor known as the converter and the adjacent elongated light chain binding region. Analysis of four structural states of the motor provides a detailed understanding of the rearrangements and pathways of communication in the motor that are necessary for detachment from the actin track and repriming of the motor. However, the important part of the cycle in which force is produced remains enigmatic and awaits new high-resolution structures. The value of a structural approach is particularly evident from clues provided by the structural states of the reverse myosin VI motor. Crystallographic structures have revealed that rearrangements within the converter subdomain occur, which explains why this myosin can produce a large stroke in the opposite direction to all other myosins, despite a very short lever arm. By providing a detailed understanding of the motor rearrangements, structural biology will continue to reveal essential information and help solve current enigma, such as how actin promotes force production, how motors are tuned for specific cellular roles or how motor/cargo interactions regulate the function of myosin in the cell.
Collapse
Affiliation(s)
- Paola Llinas
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Olena Pylypenko
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Tatiana Isabet
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| | - Monalisa Mukherjea
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085 USA
| | - H. Lee Sweeney
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085 USA
| | - Anne M. Houdusse
- Structural Motility, Institut Curie CNRS, UMR144, 26 rue d’Ulm, 75248 Paris cedex 05, France
| |
Collapse
|
10
|
Sun Y, Goldman YE. Lever-arm mechanics of processive myosins. Biophys J 2011; 101:1-11. [PMID: 21723809 DOI: 10.1016/j.bpj.2011.05.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 05/07/2011] [Accepted: 05/09/2011] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yujie Sun
- Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
11
|
Abstract
Myosin-Is are molecular motors that link cellular membranes to the actin cytoskeleton, where they play roles in mechano-signal transduction and membrane trafficking. Some myosin-Is are proposed to act as force sensors, dynamically modulating their motile properties in response to changes in tension. In this study, we examined force sensing by the widely expressed myosin-I isoform, myo1b, which is alternatively spliced in its light chain binding domain (LCBD), yielding proteins with lever arms of different lengths. We found the actin-detachment kinetics of the splice isoforms to be extraordinarily tension-sensitive, with the magnitude of tension sensitivity to be related to LCBD splicing. Thus, in addition to regulating step-size, motility rates, and myosin activation, the LCBD is a key regulator of force sensing. We also found that myo1b is substantially more tension-sensitive than other myosins with similar length lever arms, indicating that different myosins have different tension-sensitive transitions.
Collapse
|
12
|
Fukushima H, Ikeda D, Tao Y, Watabe S. Myosin heavy chain genes expressed in juvenile and adult silver carp Hypopthalmichthys molitrix: Novel fast-type myosin heavy chain genes of silver carp. Gene 2009; 432:102-11. [DOI: 10.1016/j.gene.2008.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/10/2008] [Accepted: 11/16/2008] [Indexed: 11/29/2022]
|
13
|
Chandran PL, Wolf CB, Mofrad MRK. Band-like Stress Fiber Propagation in a Continuum and Implications for Myosin Contractile Stresses. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0044-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Beausang JF, Schroeder HW, Nelson PC, Goldman YE. Twirling of actin by myosins II and V observed via polarized TIRF in a modified gliding assay. Biophys J 2008; 95:5820-31. [PMID: 18931255 PMCID: PMC2599829 DOI: 10.1529/biophysj.108.140319] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022] Open
Abstract
The force generated between actin and myosin acts predominantly along the direction of the actin filament, resulting in relative sliding of the thick and thin filaments in muscle or transport of myosin cargos along actin tracks. Previous studies have also detected lateral forces or torques that are generated between actin and myosin, but the origin and biological role of these sideways forces is not known. Here we adapt an actin gliding filament assay to measure the rotation of an actin filament about its axis ("twirling") as it is translocated by myosin. We quantify the rotation by determining the orientation of sparsely incorporated rhodamine-labeled actin monomers, using polarized total internal reflection microscopy. To determine the handedness of the filament rotation, linear incident polarizations in between the standard s- and p-polarizations were generated, decreasing the ambiguity of our probe orientation measurement fourfold. We found that whole myosin II and myosin V both twirl actin with a relatively long (approximately 1 microm), left-handed pitch that is insensitive to myosin concentration, filament length, and filament velocity.
Collapse
Affiliation(s)
- John F Beausang
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
15
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
16
|
Tropomyosin and the steric mechanism of muscle regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:95-109. [PMID: 19209816 DOI: 10.1007/978-0-387-85766-4_8] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contraction in all muscles must be precisely regulated and requisite control systems must be able to adjust to changes in physiological and myopathic stimuli. In this chapter, we outline the structural evidence for a steric mechanism that governs muscle activity. The mechanism involves calcium and myosin induced changes in the position of tropomyosin along actin-based thin filaments. This process either blocks or uncovers myosin crossbridge binding sites on actin and consequently regulates crossbridge cycling on thin filaments, the sliding of thin and thick filaments and muscle shortening and force production.
Collapse
|
17
|
Eddinger TJ, Meer DP. Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 2007; 293:C493-508. [PMID: 17475667 DOI: 10.1152/ajpcell.00131.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both smooth muscle (SM) and nonmuscle class II myosin molecules are expressed in SM tissues comprising hollow organ systems. Individual SM cells may express one or more of multiple myosin II isoforms that differ in myosin heavy chain (MHC) and myosin light chain (MLC) subunits. Although much has been learned, the expression profiles, organization within contractile filaments, localization within cells, and precise roles in various contractile functions of these different myosin molecules are still not well understood. However, data supporting unique physiological roles for certain isoforms continues to build. Isoform differences located in the S1 head region of the MHC can alter actin binding and rates of ATP hydrolysis. Differences located in the MHC tail can alter the formation, stability, and size of the myosin thick filament. In these distinct ways, both head and tail isoform differences can alter force generation and muscle shortening velocities. The MLCs that are associated with the lever arm of the S1 head can affect the flexibility and range of motion of this domain and possibly the motion of the S2 and motor domains. Phosphorylation of MLC(20) has been associated with conformational changes in the S1 and/or S2 fragments regulating enzymatic activity of the entire myosin molecule. A challenge for the future will be delineation of the physiological significance of the heterogeneous expression of these isoforms in developmental, tissue-specific, and species-specific patterns and or the intra- and intercellular heterogeneity of myosin isoform expression in SM cells of a given organ.
Collapse
Affiliation(s)
- Thomas J Eddinger
- Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | | |
Collapse
|
18
|
Abstract
The "conventional" isoform of myosin that polymerizes into filaments (myosin II) is the molecular motor powering contraction in all three types of muscle. Considerable attention has been paid to the developmental progression, isoform distribution, and mutations that affect myocardial development, function, and adaptation. Optical trap (laser tweezer) experiments and various types of high-resolution fluorescence microscopy, capable of interrogating individual protein motors, are revealing novel and detailed information about their functionally relevant nanometer motions and pico-Newton forces. Single-molecule laser tweezer studies of cardiac myosin isoforms and their mutants have helped to elucidate the pathogenesis of familial hypertrophic cardiomyopathies. Surprisingly, some disease mutations seem to enhance myosin function. More broadly, the myosin superfamily includes more than 20 nonfilamentous members with myriad cellular functions, including targeted organelle transport, endocytosis, chemotaxis, cytokinesis, modulation of sensory systems, and signal transduction. Widely varying genetic, developmental and functional disorders of the nervous, pigmentation, and immune systems have been described in accordance with these many roles. Compared to the collective nature of myosin II, some myosin family members operate with only a few partners or even alone. Individual myosin V and VI molecules can carry cellular vesicular cargoes much farther distances than their own size. Laser tweezer mechanics, single-molecule fluorescence polarization, and imaging with nanometer precision have elucidated the very different mechano-chemical properties of these isoforms. Critical contributions of nonsarcomeric myosins to myocardial development and adaptation are likely to be discovered in future studies, so these techniques and concepts may become important in cardiovascular research.
Collapse
Affiliation(s)
- Jody A Dantzig
- University of Pennsylvania School of Medicine, Pennsylvania Muscle Institute, 3700 Hamilton Walk, D700 Richards Building, Philadelphia, PA 19104-6083, USA
| | | | | |
Collapse
|
19
|
Liang CS, Kobiyama A, Shimizu A, Sasaki T, Asakawa S, Shimizu N, Watabe S. Fast skeletal muscle myosin heavy chain gene cluster of medaka Oryzias latipes enrolled in temperature adaptation. Physiol Genomics 2007; 29:201-14. [PMID: 17227888 DOI: 10.1152/physiolgenomics.00078.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To disclose mechanisms involved in temperature acclimation of fish muscle, we subjected eurythermal fish of medaka Oryzias latipes to cloning of myosin heavy chain genes (MYHs). We cloned cDNAs encoding fast skeletal muscle myosin heavy chain (MYH) isoforms from cDNA libraries of medaka acclimated to 10 and 30 degrees C and observed that different MYH cDNA clones are expressed in the two temperature-acclimated fish. Subsequently, we isolated several overlapping MYH contigs by shotgun cloning strategy from a medaka genomic library. Contig assembly of the complete medaka MYH (mMYH) locus of 219 kbp revealed a cluster of tandemly arrayed 11 mMYHs, in which eight genes are actually transcribed, with the remaining three being pseudogenes. Expression analysis of the transcribed genes revealed that two genes were each highly expressed in medaka acclimated to 10 and 30 degrees C, whereas comparatively lower expression levels of the three genes were exclusively observed in medaka acclimated to 30 degrees C. cDNAs of the remaining genes were too underrepresented in the libraries to determine the expression levels, and the transcripts could only be obtained by reverse transcription-polymerase chain reaction. Deduced amino acid sequences in the loop 1 and loop 2 regions of mMYHs were highly variable, suggesting that these isoforms were functionally different. The present findings consolidate our knowledge on teleost MYH multigene family and would provide further insight into the mechanisms by which expressions of individual MYH molecules are fine-tuned with environmental temperature fluctuations with further functional analysis of the genes concerned.
Collapse
Affiliation(s)
- Chun-Shi Liang
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Sakamoto T, Yildez A, Selvin PR, Sellers JR. Step-size is determined by neck length in myosin V. Biochemistry 2006; 44:16203-10. [PMID: 16331980 DOI: 10.1021/bi0512086] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The highly processive motor, myosin V, has an extremely long neck containing six calmodulin-binding IQ motifs that allows it to take multiple 36 nm steps corresponding to the pseudo-repeat of actin. To further investigate how myosin V moves processively on actin filaments, we altered the length of the neck by adding or deleting IQ motifs in myosin constructs lacking the globular tail domain. These myosin V IQ mutants were fluorescently labeled by exchange of a single Cy3-labeled calmodulin into the neck region of one head. We measured the step-size of these individual IQ mutants with nanometer precision and subsecond resolution using FIONA. The step-size was proportional to neck length for constructs containing 2, 4, 6, and 8 IQ motifs, providing strong support for the swinging lever-arm model of myosin motility. In addition, the kinetics of stepping provided additional support for the hand-over-hand model whereby the two heads alternately assume the leading position. Interestingly, the 8IQ myosin V mutant gave a broad distribution of step-sizes with multiple peaks, suggesting that this mutant has many choices of binding sites on an actin filament. These data demonstrate that the step-size of myosin V is affected by the length of its neck and is not solely determined by the pseudo-repeat of the actin filament.
Collapse
Affiliation(s)
- Takeshi Sakamoto
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1762, USA
| | | | | | | |
Collapse
|
21
|
Sellers JR. Fifty years of contractility research post sliding filament hypothesis. J Muscle Res Cell Motil 2005; 25:475-82. [PMID: 15630612 DOI: 10.1007/s10974-004-4239-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- James R Sellers
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|