1
|
Rastegarpouyani H, Hojjatian A, Taylor KA. Two Forms of Thick Filament in the Flight Muscle of Drosophila melanogaster. Int J Mol Sci 2024; 25:11313. [PMID: 39457097 PMCID: PMC11509062 DOI: 10.3390/ijms252011313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Invertebrate striated muscle myosin filaments are highly variable in structure. The best characterized myosin filaments are those found in insect indirect flight muscle (IFM) in which the flight-powering muscles are not attached directly to the wings. Four insect orders, Hemiptera, Diptera, Hymenoptera, and Coleoptera, have evolved IFM. IFM thick filaments from the first three orders have highly similar myosin arrangements but differ significantly among their non-myosin proteins. The cryo-electron microscopy of isolated IFM myosin filaments from the Dipteran Drosophila melanogaster described here revealed the coexistence of two distinct filament types, one presenting a tubular backbone like in previous work and the other a solid backbone. Inside an annulus of myosin tails, tubular filaments show no noticeable densities; solid filaments show four paired paramyosin densities. Both myosin heads of the tubular filaments are disordered; solid filaments have one completely and one partially immobilized head. Tubular filaments have the protein stretchin-klp on their surface; solid filaments do not. Two proteins, flightin and myofilin, are identifiable in all the IFM filaments previously determined. In Drosophila, flightin assumes two conformations, being compact in solid filaments and extended in tubular filaments. Nearly identical solid filaments occur in the large water bug Lethocerus indicus, which flies infrequently. The Drosophila tubular filaments occur in younger flies, and the solid filaments appear in older flies, which fly less frequently if at all, suggesting that the solid filament form is correlated with infrequent muscle use. We suggest that the solid form is designed to conserve ATP when the muscle is not in active use.
Collapse
Affiliation(s)
- Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (H.R.); (A.H.)
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Alimohammad Hojjatian
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (H.R.); (A.H.)
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (H.R.); (A.H.)
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
2
|
Wei M, Zhang N, Li XD. Characterisation of the myosin light chain kinase (MLCK) gene of Locusta migratoria and the encoded MLCK. INSECT MOLECULAR BIOLOGY 2024; 33:338-349. [PMID: 38411321 DOI: 10.1111/imb.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Myosin light chain kinase (MLCK) is a dedicated kinase of myosin regulatory light chain (RLC), playing an essential role in the regulation of muscle contraction and cell motility. Much of the knowledge about MLCK comes from the study of vertebrate MLCK, and little is known about insect MLCK. Here, we identified the single MLCK gene in the locust Locusta migratoria, which spans over 1400 kb, includes 62 exons and accounts for at least five transcripts. We found that the five distinct transcripts of the locust MLCK gene are expressed in a tissue-specific manner, including three muscle-specific isoforms and two generic isoforms. To characterise the kinase activity of locust MLCK, we recombinantly expressed LmMLCK-G, the smallest locust MLCK isoform, in insect Sf9 cells. We demonstrated that LmMLCK-G is a Ca2+/calmodulin-dependent kinase that specifically phosphorylates serine 50 of locust muscle myosin RLC (LmRLC). Additionally, we found that almost all LmRLC molecules in the flight muscle and the hindleg muscles of adult locusts are phosphorylated.
Collapse
Affiliation(s)
- Miao Wei
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning Zhang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Abbasi Yeganeh F, Rastegarpouyani H, Li J, Taylor KA. Structure of the Drosophila melanogaster Flight Muscle Myosin Filament at 4.7 Å Resolution Reveals New Details of Non-Myosin Proteins. Int J Mol Sci 2023; 24:14936. [PMID: 37834384 PMCID: PMC10573858 DOI: 10.3390/ijms241914936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Striated muscle thick filaments are composed of myosin II and several non-myosin proteins which define the filament length and modify its function. Myosin II has a globular N-terminal motor domain comprising its catalytic and actin-binding activities and a long α-helical, coiled tail that forms the dense filament backbone. Myosin alone polymerizes into filaments of irregular length, but striated muscle thick filaments have defined lengths that, with thin filaments, define the sarcomere structure. The motor domain structure and function are well understood, but the myosin filament backbone is not. Here we report on the structure of the flight muscle thick filaments from Drosophila melanogaster at 4.7 Å resolution, which eliminates previous ambiguities in non-myosin densities. The full proximal S2 region is resolved, as are the connecting densities between the Ig domains of stretchin-klp. The proteins, flightin, and myofilin are resolved in sufficient detail to build an atomic model based on an AlphaFold prediction. Our results suggest a method by which flightin and myofilin cooperate to define the structure of the thick filament and explains a key myosin mutation that affects flightin incorporation. Drosophila is a genetic model organism for which our results can define strategies for functional testing.
Collapse
Affiliation(s)
- Fatemeh Abbasi Yeganeh
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (F.A.Y.); (H.R.); (J.L.)
| | - Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (F.A.Y.); (H.R.); (J.L.)
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Jiawei Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (F.A.Y.); (H.R.); (J.L.)
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA; (F.A.Y.); (H.R.); (J.L.)
| |
Collapse
|
4
|
Taylor KA. John Squire and the myosin thick filament structure in muscle. J Muscle Res Cell Motil 2023; 44:143-152. [PMID: 37099254 PMCID: PMC10686309 DOI: 10.1007/s10974-023-09646-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/22/2023] [Indexed: 04/27/2023]
Abstract
The structure of the thin, actin-containing filament of muscle is both highly conserved across a broad range of muscle types and is now well understood. The structure of the thick, myosin-containing filaments of striated muscle are quite variable and remained comparatively unknown until recently, particularly in the arrangement of the myosin tails. John Squire played a major role not only in our understanding of thin filament structure and function but also in the structure of the thick filaments. Long before much was known about the structure and composition of muscle thick filaments, he proposed a general model for how myosin filaments were constructed. His role in our current understanding the structure of striated muscle thick filaments and the extent through which his predictions have held true is the topic of this review.
Collapse
Affiliation(s)
- Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA.
| |
Collapse
|
5
|
Sirot L, Bansal R, Esquivel CJ, Arteaga-Vázquez M, Herrera-Cruz M, Pavinato VAC, Abraham S, Medina-Jiménez K, Reyes-Hernández M, Dorantes-Acosta A, Pérez-Staples D. Post-mating gene expression of Mexican fruit fly females: disentangling the effects of the male accessory glands. INSECT MOLECULAR BIOLOGY 2021; 30:480-496. [PMID: 34028117 DOI: 10.1111/imb.12719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Mating has profound physiological and behavioural consequences for female insects. During copulation, female insects typically receive not only sperm, but a complex ejaculate containing hundreds of proteins and other molecules from male reproductive tissues, primarily the reproductive accessory glands. The post-mating phenotypes affected by male accessory gland (MAG) proteins include egg development, attraction to oviposition hosts, mating, attractiveness, sperm storage, feeding and lifespan. In the Mexican fruit fly, Anastrepha ludens, mating increases egg production and the latency to remating. However, previous studies have not found a clear relationship between injection of MAG products and oviposition or remating inhibition in this species. We used RNA-seq to study gene expression in mated, unmated and MAG-injected females to understand the potential mating- and MAG-regulated genes and pathways in A. ludens. Both mating and MAG-injection regulated transcripts and pathways related to egg development. Other transcripts regulated by mating included those with orthologs predicted to be involved in immune response, musculature and chemosensory perception, whereas those regulated by MAG-injection were predicted to be involved in translational control, sugar regulation, diet detoxification and lifespan determination. These results suggest new phenotypes that may be influenced by seminal fluid molecules in A. ludens. Understanding these influences is critical for developing novel tools to manage A. ludens.
Collapse
Affiliation(s)
- L Sirot
- The College of Wooster, Wooster, OH, USA
| | - R Bansal
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - C J Esquivel
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - M Arteaga-Vázquez
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - M Herrera-Cruz
- CONACyT- Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - V A C Pavinato
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - S Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI, Tucumán, Argentina, CONICET, Argentina
| | - K Medina-Jiménez
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - M Reyes-Hernández
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - A Dorantes-Acosta
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - D Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| |
Collapse
|
6
|
Daneshparvar N, Taylor DW, O'Leary TS, Rahmani H, Abbasiyeganeh F, Previs MJ, Taylor KA. CryoEM structure of Drosophila flight muscle thick filaments at 7 Å resolution. Life Sci Alliance 2020; 3:3/8/e202000823. [PMID: 32718994 PMCID: PMC7391215 DOI: 10.26508/lsa.202000823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/24/2022] Open
Abstract
Striated muscle thick filaments are composed of myosin II and several non-myosin proteins. Myosin II's long α-helical coiled-coil tail forms the dense protein backbone of filaments, whereas its N-terminal globular head containing the catalytic and actin-binding activities extends outward from the backbone. Here, we report the structure of thick filaments of the flight muscle of the fruit fly Drosophila melanogaster at 7 Å resolution. Its myosin tails are arranged in curved molecular crystalline layers identical to flight muscles of the giant water bug Lethocerus indicus Four non-myosin densities are observed, three of which correspond to ones found in Lethocerus; one new density, possibly stretchin-mlck, is found on the backbone outer surface. Surprisingly, the myosin heads are disordered rather than ordered along the filament backbone. Our results show striking myosin tail similarity within flight muscle filaments of two insect orders separated by several hundred million years of evolution.
Collapse
Affiliation(s)
- Nadia Daneshparvar
- Department of Physics, Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Thomas S O'Leary
- Department of Molecular Physiology & Biophysics, University of Vermont College of Medicine, Burlington, VT, USA
| | - Hamidreza Rahmani
- Department of Physics, Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | | | - Michael J Previs
- Department of Molecular Physiology & Biophysics, University of Vermont College of Medicine, Burlington, VT, USA
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
7
|
Xu J, Vanderzalm PJ, Ludwig M, Su T, Tokamov SA, Fehon RG. Yorkie Functions at the Cell Cortex to Promote Myosin Activation in a Non-transcriptional Manner. Dev Cell 2018; 46:271-284.e5. [PMID: 30032991 PMCID: PMC6086586 DOI: 10.1016/j.devcel.2018.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The Hippo signaling pathway is an evolutionarily conserved mechanism that controls organ size in animals. Yorkie is well known as a transcriptional co-activator that functions downstream of the Hippo pathway to positively regulate transcription of genes that promote tissue growth. Recent studies have shown that increased myosin activity activates both Yorkie and its vertebrate orthologue YAP, resulting in increased nuclear localization and tissue growth. Here we show that Yorkie also can accumulate at the cell cortex in the apical junctional region. Moreover, Yorkie functions at the cortex to promote activation of myosin through a myosin regulatory light chain kinase, Stretchin-Mlck. This Yorkie function is not dependent on its transcriptional activity and is required for larval and adult tissues to achieve appropriate size. Based on these results, we suggest that Yorkie functions in a feedforward "amplifier" loop that promotes myosin activation, and thereby greater Yorkie activity, in response to tension.
Collapse
Affiliation(s)
- Jiajie Xu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Pamela J Vanderzalm
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biology, John Carroll University, University Heights, OH 44118, USA
| | - Michael Ludwig
- Department of Ecology and Evolutionary Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ting Su
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Chechenova MB, Bryantsev AL, Cripps RM. The Drosophila Z-disc protein Z(210) is an adult muscle isoform of Zasp52, which is required for normal myofibril organization in indirect flight muscles. J Biol Chem 2012; 288:3718-26. [PMID: 23271733 DOI: 10.1074/jbc.m112.401794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Z-disc is a critical anchoring point for thin filaments as they slide during muscle contraction. Therefore, identifying components of the Z-disc is critical for fully comprehending how myofibrils assemble and function. In the adult Drosophila musculature, the fibrillar indirect flight muscles accumulate a >200 kDa Z-disc protein termed Z(210), the identity of which has to date been unknown. Here, we use mass spectrometry and gene specific knockdown studies, to identify Z(210) as an adult isoform of the Z-disc protein Zasp52. The Zasp52 primary transcript is extensively alternatively spliced, and we describe its splicing pattern in the flight muscles, identifying a new Zasp52 isoform, which is the one recognized by the Z(210) antibody. We also demonstrate that Zasp52 is required for the association of α-actinin with the flight muscle Z-disc, and for normal sarcomere structure. These studies expand our knowledge of Zasp isoforms and their functions in muscle. Given the role of Zasp proteins in mammalian muscle development and disease, our results have relevance to mammalian muscle biology.
Collapse
Affiliation(s)
- Maria B Chechenova
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
9
|
Nicholson SJ, Hartson SD, Puterka GJ. Proteomic analysis of secreted saliva from Russian Wheat Aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J Proteomics 2012; 75:2252-68. [DOI: 10.1016/j.jprot.2012.01.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/03/2012] [Accepted: 01/27/2012] [Indexed: 01/21/2023]
|
10
|
Salvi SS, Kumar RP, Ramachandra NB, Sparrow JC, Nongthomba U. Mutations in Drosophila myosin rod cause defects in myofibril assembly. J Mol Biol 2012; 419:22-40. [PMID: 22370558 DOI: 10.1016/j.jmb.2012.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/17/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies.
Collapse
Affiliation(s)
- Sheetal S Salvi
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
11
|
Schönbauer C, Distler J, Jährling N, Radolf M, Dodt HU, Frasch M, Schnorrer F. Spalt mediates an evolutionarily conserved switch to fibrillar muscle fate in insects. Nature 2011; 479:406-9. [PMID: 22094701 DOI: 10.1038/nature10559] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/13/2011] [Indexed: 11/09/2022]
Abstract
Flying insects oscillate their wings at high frequencies of up to 1,000 Hz and produce large mechanical forces of 80 W per kilogram of muscle. They utilize a pair of perpendicularly oriented indirect flight muscles that contain fibrillar, stretch-activated myofibres. In contrast, all other, more slowly contracting, insect body muscles have a tubular muscle morphology. Here we identify the transcription factor Spalt major (Salm) as a master regulator of fibrillar flight muscle fate in Drosophila. salm is necessary and sufficient to induce fibrillar muscle fate. salm switches the entire transcriptional program from tubular to fibrillar fate by regulating the expression and splicing of key sarcomeric components specific to each muscle type. Spalt function is conserved in insects evolutionarily separated by 280 million years. We propose that Spalt proteins switch myofibres from tubular to fibrillar fate during development, a function potentially conserved in the vertebrate heart--a stretch-activated muscle sharing features with insect flight muscle.
Collapse
Affiliation(s)
- Cornelia Schönbauer
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Ayme-Southgate A, Philipp RA, Southgate RJ. Projectin PEVK domain, splicing variants and domain structure in basal and derived insects. INSECT MOLECULAR BIOLOGY 2011; 20:347-356. [PMID: 21349121 DOI: 10.1111/j.1365-2583.2011.01069.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The third elastic filament of striated muscles consists of giant proteins: titin (in vertebrates) and kettin/projectin (in insects). In all three proteins, elasticity is at least partly associated with the so-called PEVK domain. The projectin PEVK domains of diverse insects are highly divergent compared with an otherwise conserved protein organization. We present the characterization of the PEVK domain in two dragonflies and in human lice. A conserved segment at the end of the PEVK, the NH(2)-terminal conserved segment-1 (NTCS-1), may serve as an anchor point for projectin to either myosin or actin, providing a mechanical link. The analysis of alternative splicing variants identifies the shortest PEVK isoform as the predominant form in the flight muscles of several insects, possibly contributing to myofibrillar stiffness.
Collapse
Affiliation(s)
- A Ayme-Southgate
- Department of Biology, College of Charleston, Charleston, SC, USA.
| | | | | |
Collapse
|
13
|
Suggs JA, Cammarato A, Kronert WA, Nikkhoy M, Dambacher CM, Megighian A, Bernstein SI. Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length. J Mol Biol 2007; 367:1312-29. [PMID: 17316684 PMCID: PMC1965590 DOI: 10.1016/j.jmb.2007.01.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin "hinge" region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial "melting" of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was approximately 5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus, alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Drosophila melanogaster/genetics
- Drosophila melanogaster/physiology
- Models, Biological
- Molecular Sequence Data
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Myosin Heavy Chains/genetics
- Myosin Subfragments/genetics
- Myosin Subfragments/physiology
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Transgenes
Collapse
Affiliation(s)
- Jennifer A. Suggs
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Anthony Cammarato
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - William A. Kronert
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Massoud Nikkhoy
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Corey M. Dambacher
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Aram Megighian
- Department of Human Anatomy and Physiology, University of Padova, 35131 Padova, Italy
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute and SDSU Heart Institute, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|
14
|
Burkart C, Qiu F, Brendel S, Benes V, Hååg P, Labeit S, Leonard K, Bullard B. Modular Proteins from the Drosophila sallimus (sls) Gene and their Expression in Muscles with Different Extensibility. J Mol Biol 2007; 367:953-69. [PMID: 17316686 DOI: 10.1016/j.jmb.2007.01.059] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/21/2007] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
The passive elasticity of the sarcomere in striated muscle is determined by large modular proteins, such as titin in vertebrates. In insects, the function of titin is divided between two shorter proteins, projectin and sallimus (Sls), which are the products of different genes. The Drosophila sallimus (sls) gene codes for a protein of 2 MDa. The N-terminal half of the protein is largely made up of immunoglobulin (Ig) domains and unique sequence; the C-terminal half has two stretches of sequence similar to the elastic PEVK region of titin, and at the end of the molecule there is a region of tandem Ig and fibronectin domains. We have investigated splicing pathways of the sls gene and identified isoforms expressed in different muscle types, and at different stages of Drosophila development. The 5' half of sls codes for zormin and kettin; both proteins contain Ig domains and can be expressed as separate isoforms, or as larger proteins linked to sequence downstream. There are multiple splicing pathways between the kettin region of sls and sequence coding for the two PEVK regions. All the resulting protein isoforms have sequence derived from the 3' end of the sls gene. Splicing of exons varies at different stages of development. Kettin RNA is predominant in the embryo, and longer transcripts are expressed in larva, pupa and adult. Sls isoforms in the indirect flight muscle (IFM) are zormin, kettin and Sls(700), in which sequence derived from the end of the gene is spliced to kettin RNA. Zormin is in both M-line and Z-disc. Kettin and Sls(700) extend from the Z-disc to the ends of the thick filaments, though, Sls(700) is only in the myofibril core. These shorter isoforms would contribute to the high stiffness of IFM. Other muscles in the thorax and legs have longer Sls isoforms with varying amounts of PEVK sequence; all span the I-band to the ends of the thick filaments. In muscles with longer I-bands, the proportion of PEVK sequence would determine the extensibility of the sarcomere. Alternative Sls isoforms could regulate the stiffness of the many fibre types in Drosophila muscles.
Collapse
Affiliation(s)
- Christoph Burkart
- Institut für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, D-68167 Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|