1
|
Gurniak CB, Chevessier F, Jokwitz M, Jönsson F, Perlas E, Richter H, Matern G, Boyl PP, Chaponnier C, Fürst D, Schröder R, Witke W. Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance. Eur J Cell Biol 2014; 93:252-66. [PMID: 24598388 DOI: 10.1016/j.ejcb.2014.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Abstract
Mutations in the human actin depolymerizing factor cofilin2 result in an autosomal dominant form of nemaline myopathy. Here, we report on the targeted ablation of murine cofilin2, which leads to a severe skeletal muscle specific phenotype within the first two weeks after birth. Apart from skeletal muscle, cofilin2 is also expressed in heart and CNS, however the pathology was restricted to skeletal muscle. The two close family members of cofilin2 - ADF and cofilin1 - were co-expressed in muscle, but unable to compensate for the loss of cofilin2. While primary myofibril assembly and muscle development were unaffected in cofilin2 mutant mice, progressive muscle degeneration was observed between postnatal days 3 and 7. Muscle pathology was characterized by sarcoplasmic protein aggregates, fiber size disproportion, mitochondrial abnormalities and internal nuclei. The observed muscle pathology differed from nemaline myopathy, but showed combined features of actin-associated myopathy and myofibrillar myopathy. In cofilin2 mutant mice, the postnatal expression pattern and turnover of sarcomeric α-actin isoforms were altered. Levels of smooth muscle α-actin were increased and remained high in developing muscles, suggesting that cofilin2 plays a crucial role during the exchange of α-actin isoforms during the early postnatal remodeling of the sarcomere.
Collapse
Affiliation(s)
| | | | - Melanie Jokwitz
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | - Friederike Jönsson
- Institut Pasteur, Département d'Immunologie, Laboratoire Anticorps en Thérapie et Pathologie, Inserm, U.760, 75015 Paris, France
| | | | - Hendrik Richter
- University of Bonn, Institute of Cellular and Molecular Botany, Germany
| | - Gabi Matern
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | - Pietro Pilo Boyl
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | | | - Dieter Fürst
- University of Bonn, Institute of Cell Biology, Germany
| | - Rolf Schröder
- University of Erlangen, Institute of Neuropathology, Germany
| | - Walter Witke
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany.
| |
Collapse
|
2
|
Miyauchi-Nomura S, Obinata T, Sato N. Cofilin is required for organization of sarcomeric actin filaments in chicken skeletal muscle cells. Cytoskeleton (Hoboken) 2012; 69:290-302. [PMID: 22396208 DOI: 10.1002/cm.21025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 12/15/2022]
Abstract
Cofilin is an actin regulatory protein that plays a critical role in actin filament dynamics in a variety of cells. We have previously demonstrated that excess cofilin in skeletal muscle cells leads to disruption of actin filaments, followed by actin-cofilin rod formation in the cytoplasm. In this study, to further clarify the role of cofilin in actin assembly during myofibrillogenesis, cofilin expression was suppressed in cultured chicken skeletal muscle cells. First, we confirmed that turnover of cofilin in myotubes was much higher than that of actin, and that the cofilin level could be decreased drastically within 2 days when cofilin de novo synthesis was suppressed. Next, cofilin expression in individual myotubes was suppressed by introducing antisense morpholino oligonucleotides into the cells by microinjection. Cofilin depletion at the early phase of myofibrillogenesis caused abnormal actin aggregates in myotubes and impaired actin organization into cross-striated myofibril structures. However, when cofilin expression was suppressed in developed myotubes, actin localization in striated myofibrils was scarcely affected. These results indicate that cofilin plays a critical role in the regulation of actin assembly at the early process of myofibrillogenesis.
Collapse
Affiliation(s)
- Saeko Miyauchi-Nomura
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 262-8533, Japan
| | | | | |
Collapse
|
3
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
4
|
Yu J, Peng H, Ruan Q, Fatima A, Getsios S, Lavker RM. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J 2010; 24:3950-9. [PMID: 20530248 DOI: 10.1096/fj.10-157404] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
microRNA-205 (miR-205) and miR-184 coordinately regulate the lipid phosphatase SHIP2 for Akt survival signaling in keratinocytes. As the PI3K-Akt pathway has also been implicated in regulating the actin cytoskeleton and cell motility, we investigated the role that these 2 miRNAs play in keratinocyte migration. We used antagomirs (antago) to reduce the levels of miR-205 and miR-184 in primary human epidermal keratinocytes (HEKs) and corneal epithelial keratinocytes (HCEKs) as well as direct SHIP2 silencing using siRNA oligos. Treatment of HEKs and HCEKs with antago-205 increased SHIP2 levels and impaired the ability of these cells to seal linear scratch wounds compared with untreated or irrelevant-antago treatments. In contrast, AKT signaling was enhanced and wounds sealed faster in HCEKs where miR-184 was suppressed, enabling miR-205 to inhibit SHIP2. Similar increases in migration were observed following direct SHIP2 silencing in HEKs. Furthermore, down-regulation of miR-205 resulted in an increase in Rho-ROCKI activity, phosphorylation of the actin severing protein cofilin, and a corresponding diminution of filamentous actin. The connection among miR-205, RhoA-ROCKI-cofilin inactivation, and the actin cytoskeleton represents a novel post-translational mechanism for the regulation of normal human keratinocyte migration.
Collapse
Affiliation(s)
- Jia Yu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward 9-124, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
5
|
Oser M, Condeelis J. The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 2010; 108:1252-62. [PMID: 19862699 DOI: 10.1002/jcb.22372] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The actin severing protein cofilin is essential for directed cell migration and chemotaxis, in many cell types and is also important for tumor cell invasion during metastasis. Through its severing activity, cofilin increases the number of free barbed ends to initiate actin polymerization for actin-based protrusion in two distinct subcellular compartments in invasive tumor cells: lamellipodia and invadopodia. Cofilin severing activity is tightly regulated and multiple mechanisms are utilized to regulate cofilin activity. In this prospect, we have grouped the primary on/off regulation into two broad categories, both of which are important for inhibiting cofilin from binding to F-actin or G-actin: (1) Blocking cofilin activity by the binding of cofilin to either PI(4,5)P(2) at lamellipodia, or cortactin at invadopodia. (2) Blocking cofilin's ability to bind to actin via serine phosphorylation. Although the literature suggests that these cofilin regulatory mechanisms may be cell-type dependent, we propose the existence of a common cofilin activity cycle in which both operate. In this common cycle, the mechanism used to initiate cofilin activity is determined by the starting point in the cycle in a given subcellular compartment.
Collapse
Affiliation(s)
- Matthew Oser
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | |
Collapse
|
6
|
Mandal M, Yan Z. Phosphatidylinositol (4,5)-bisphosphate regulation of N-methyl-D-aspartate receptor channels in cortical neurons. Mol Pharmacol 2009; 76:1349-59. [PMID: 19770351 PMCID: PMC2784732 DOI: 10.1124/mol.109.058701] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/18/2009] [Indexed: 11/22/2022] Open
Abstract
The membrane phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP(2)) has been implicated in the regulation of several ion channels and transporters. In this study, we examined the impact of PIP(2) on N-methyl-D-aspartate receptors (NMDARs) in cortical neurons. Blocking PIP(2) synthesis by inhibiting phosphoinositide-4 kinase, or stimulating PIP(2) hydrolysis via activation of phospholipase C (PLC), or blocking PIP(2) function with an antibody caused a significant reduction of NMDAR-mediated currents. On the other hand, inhibition of PLC or application of PIP(2) caused an enhancement of NMDAR currents. These electrophysiological effects were accompanied by changes in NMDAR surface clusters induced by agents that manipulate PIP(2) levels. The PIP(2) regulation of NMDAR currents was abolished by the dynamin inhibitory peptide, which blocks receptor internalization. Agents perturbing actin stability prevented PIP(2) regulation of NMDAR currents, suggesting the actin-dependence of this effect of PIP(2). Cofilin, a major actin depolymerizing factor, which has a common binding sequence for actin and PIP(2), was required for PIP(2) regulation of NMDAR currents. It is noteworthy that the PIP(2) regulation of NMDAR channels was impaired in a transgenic mouse model of Alzheimer's disease, probably because of the amyloid-beta disruption of PIP(2) metabolism. Taken together, our data suggest that continuous synthesis of PIP(2) at the membrane might be important for the maintenance of NMDARs at the cell surface. When PIP(2) is lost, cofilin is released from the PIP(2) complex and is rendered free to depolymerize actin. With the actin cytoskeleton no longer intact, NMDARs are internalized via a dynamin/clathrin-dependent mechanism, leading to reduced NMDAR currents.
Collapse
Affiliation(s)
- Madhuchhanda Mandal
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
7
|
Muscle LIM protein interacts with cofilin 2 and regulates F-actin dynamics in cardiac and skeletal muscle. Mol Cell Biol 2009; 29:6046-58. [PMID: 19752190 DOI: 10.1128/mcb.00654-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The muscle LIM protein (MLP) and cofilin 2 (CFL2) are important regulators of striated myocyte function. Mutations in the corresponding genes have been directly associated with severe human cardiac and skeletal myopathies, and aberrant expression patterns have often been observed in affected muscles. Herein, we have investigated whether MLP and CFL2 are involved in common molecular mechanisms, which would promote our understanding of disease pathogenesis. We have shown for the first time, using a range of biochemical and immunohistochemical methods, that MLP binds directly to CFL2 in human cardiac and skeletal muscles. The interaction involves the inter-LIM domain, amino acids 94 to 105, of MLP and the amino-terminal domain, amino acids 1 to 105, of CFL2, which includes part of the actin depolymerization domain. The MLP/CFL2 complex is stronger in moderately acidic (pH 6.8) environments and upon CFL2 phosphorylation, while it is independent of Ca(2+) levels. This interaction has direct implications in actin cytoskeleton dynamics in regulating CFL2-dependent F-actin depolymerization, with maximal depolymerization enhancement at an MLP/CFL2 molecular ratio of 2:1. Deregulation of this interaction by intracellular pH variations, CFL2 phosphorylation, MLP or CFL2 gene mutations, or expression changes, as observed in a range of cardiac and skeletal myopathies, could impair F-actin depolymerization, leading to sarcomere dysfunction and disease.
Collapse
|
8
|
Leyman S, Sidani M, Ritsma L, Waterschoot D, Eddy R, Dewitte D, Debeir O, Decaestecker C, Vandekerckhove J, van Rheenen J, Ampe C, Condeelis J, Van Troys M. Unbalancing the phosphatidylinositol-4,5-bisphosphate-cofilin interaction impairs cell steering. Mol Biol Cell 2009; 20:4509-23. [PMID: 19741095 DOI: 10.1091/mbc.e09-02-0121] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cofilin is a key player in actin dynamics during cell migration. Its activity is regulated by (de)phosphorylation, pH, and binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)]. Here, we here use a human cofilin-1 (D122K) mutant with increased binding affinity for PI(4,5)P(2) and slower release from the plasma membrane to study the role of the PI(4,5)P(2)-cofilin interaction in migrating cells. In fibroblasts in a background of endogenous cofilin, D122K cofilin expression negatively affects cell turning frequency. In carcinoma cells with down-regulated endogenous cofilin, D122K cofilin neither rescues the drastic morphological defects nor restores the effects in cell turning capacity, unlike what has been reported for wild-type cofilin. In cofilin knockdown cells, D122K cofilin expression promotes outgrowth of an existing lamellipod in response to epidermal growth factor (EGF) but does not result in initiation of new lamellipodia. This indicates that, next to phospho- and pH regulation, the normal release kinetics of cofilin from PI(4,5)P(2) is crucial as a local activation switch for lamellipodia initiation and as a signal for migrating cells to change direction in response to external stimuli. Our results demonstrate that the PI(4,5)P(2) regulatory mechanism, that is governed by EGF-dependent phospholipase C activation, is a determinant for the spatial and temporal control of cofilin activation required for lamellipodia initiation.
Collapse
Affiliation(s)
- Shirley Leyman
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Asano Y, Nagasaki A, Uyeda TQP. Correlated waves of actin filaments and PIP3 in Dictyostelium cells. ACTA ACUST UNITED AC 2009; 65:923-34. [PMID: 18814278 DOI: 10.1002/cm.20314] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity.
Collapse
Affiliation(s)
- Yukako Asano
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
10
|
Ono K, Ono S. Actin-ADF/cofilin rod formation in Caenorhabditis elegans muscle requires a putative F-actin binding site of ADF/cofilin at the C-terminus. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:398-408. [PMID: 19459188 PMCID: PMC2733252 DOI: 10.1002/cm.20383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Under a number of stress or pathological conditions, actin and actin depolymerizing factor (ADF)/cofilin form rod-like structures that contain abnormal bundles of actin filaments that are heavily decorated with ADF/cofilin. However, the mechanism of actin rod formation and the physiological role of actin rods are not clearly understood. Here, we report that overexpression of green fluorescent protein-fused UNC-60B, a muscle-specific ADF/cofilin isoform, in Caenorhabditis elegans body wall muscle induces formation of rod-like structures. The rods contained GFP-UNC-60B, actin-interacting protein 1 (AIP1), and actin, but not other major actin-associated proteins, thus resembling actin-ADF/cofilin rods found in other organisms. However, depletion or overexpression of AIP1 did not affect formation of the actin-GFP-UNC-60B rods, suggesting that AIP1 does not play a significant role in the rod assembly. Truncation of the C-terminal tail, a putative F-actin binding site, of UNC-60B abolished induction of the rod formation, strongly suggesting that stable association of UNC-60B with F-actin, which is mediated by its C-terminus, is required for inducing actin-ADF/cofilin rods. This study suggests that C. elegans can be a new model to study functions of actin-ADF/cofilin rods.
Collapse
Affiliation(s)
- Kanako Ono
- Departments of Pathology and Cell Biology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
11
|
Fania C, Anastasia L, Vasso M, Papini N, Capitanio D, Venerando B, Gelfi C. Proteomic signature of reversine-treated murine fibroblasts by 2-D difference gel electrophoresis and MS: Possible associations with cell signalling networks. Electrophoresis 2009; 30:2193-206. [DOI: 10.1002/elps.200800800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|