1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Vincent L, Zidi M, Portero P, Belghith K, Serhal RB, Guihard M, Maktouf W. Quantifying Active and Passive Stiffness in Plantar Flexor Muscles Following Intermittent Maximal Isometric Contractions Using Shear Wave Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1987-1994. [PMID: 39343628 DOI: 10.1016/j.ultrasmedbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE This study aimed: (i) to investigate the impact of fatigue, triggered by maximal isometric contraction exercises, on the active and passive stiffness of plantar flexors (PF), and (ii) to examine the relationship between changes in mechanical parameters and neuromuscular alterations after fatigue. METHODS A healthy cohort (n = 12; age = 27.3 ± 5.5 y; BMI = 24.4 ± 2.35 kg/m²) was instructed to perform 60 isometric contractions, each lasting 4 s with a 1-s rest interval, using an ergometer. Several measures were taken before and after the fatigue protocol. First, the stiffness of the PF-tendon complex (PFC) was quantified during passive ankle mobilization both during and after the fatigue protocol using the ergometer. Additionally, from shear wave elastography, the active and passive stiffness of the gastrocnemius medialis (GM) were measured during passive ankle mobilization and isometric maximal voluntary contraction (MVC), respectively. Finally, the peak torque and the rate of torque development (RFD) of PF were assessed during the MVC using the ergometer. Ankle muscle activities (surface electromyograph [SEMG]) were recorded during all evaluations using electromyography. RESULTS After the fatigue protocol, the results revealed a decline in active stiffness, peak torque of PF, RFD and SEMG activity of the GM (p < 0.001). Furthermore, significant correlation was identified between the decrease of the peak torque of PF and the active stiffness of the GM (r = 0.6; p < 0.05). A decrease in the PFC stiffness (p < 0.001) and a decrease in the shear modulus of the GM at 20° (p < 0.001) were also observed. CONCLUSION Isometric fatiguing exercises modify the mechanical properties of both the contractile and elastic components. Notably, decreases in both passive and active stiffness may be critical for athletes, as these changes could potentially increase the risk of injury.
Collapse
Affiliation(s)
- Lhéo Vincent
- University of Paris Est Creteil, BIOTN, Creteil, France; EMEIS Group, Clinique du Parc de Belleville, Paris, France
| | - Mustapha Zidi
- University of Paris Est Creteil, BIOTN, Creteil, France
| | | | - Kalthoum Belghith
- University of Paris Est Creteil, BIOTN, Creteil, France; EMEIS Group, Clinique du Parc de Belleville, Paris, France
| | | | | | - Wael Maktouf
- University of Paris Est Creteil, BIOTN, Creteil, France.
| |
Collapse
|
3
|
Schmidt AA, Grosberg AY, Grosberg A. A novel kinetic model to demonstrate the independent effects of ATP and ADP/Pi concentrations on sarcomere function. PLoS Comput Biol 2024; 20:e1012321. [PMID: 39102392 PMCID: PMC11326600 DOI: 10.1371/journal.pcbi.1012321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/15/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Understanding muscle contraction mechanisms is a standing challenge, and one of the approaches has been to create models of the sarcomere-the basic contractile unit of striated muscle. While these models have been successful in elucidating many aspects of muscle contraction, they fall short in explaining the energetics of functional phenomena, such as rigor, and in particular, their dependence on the concentrations of the biomolecules involved in the cross-bridge cycle. Our hypothesis posits that the stochastic time delay between ATP adsorption and ADP/Pi release in the cross-bridge cycle necessitates a modeling approach where the rates of these two reaction steps are controlled by two independent parts of the total free energy change of the hydrolysis reaction. To test this hypothesis, we built a two-filament, stochastic-mechanical half-sarcomere model that separates the energetic roles of ATP and ADP/Pi in the cross-bridge cycle's free energy landscape. Our results clearly demonstrate that there is a nontrivial dependence of the cross-bridge cycle's kinetics on the independent concentrations of ATP, ADP, and Pi. The simplicity of the proposed model allows for analytical solutions of the more basic systems, which provide novel insight into the dominant mechanisms driving some of the experimentally observed contractile phenomena.
Collapse
Affiliation(s)
- Andrew A Schmidt
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, Irvine, California, United States of America
| | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York, United States of America
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, Irvine, California, United States of America
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research and Sue and Bill Gross Stem Cell Research Center and Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
4
|
A century of exercise physiology: key concepts in muscle energetics. Eur J Appl Physiol 2023; 123:25-42. [PMID: 36271943 DOI: 10.1007/s00421-022-05070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
In the mid-nineteenth century, the concept of muscle behaving like a stretched spring was developed. This elastic model of contraction predicted that the energy available to perform work was established at the start of a contraction. Despite several studies showing evidence inconsistent with the elastic model, it persisted into the twentieth century. In 1923, W. O. Fenn published a paper in which he presented evidence that appeared to clearly refute the elastic model. Fenn showed that when a muscle performs work it produces more heat than when contracting isometrically. He proposed that energy for performing work was only made available in a muscle as and when that work was performed. However, his ideas were not adopted and it was only after 15 years of technical developments that in 1938 A. V. Hill performed experiments that conclusively disproved the elastic model and supported Fenn's conclusions. Hill showed that the rate of heat production increased as a muscle made the transition from isometric to working contraction. Understanding the basis of the phenomenon observed by Fenn and Hill required another 40 years in which the processes that generate force and work in muscle and the associated scheme of biochemical reactions were established. Demonstration of the biochemical equivalent of Hill's observations-changes in rate of ATP splitting when performing work-in 1999 was possible through further technical advances. The concept that the energy, from ATP splitting, required to perform work is dynamically modulated in accord with the loads a muscle encounters when contracting is key to understanding muscle energetics.
Collapse
|
5
|
Special Issue: The Actin-Myosin Interaction in Muscle: Background and Overview. Int J Mol Sci 2019; 20:ijms20225715. [PMID: 31739584 PMCID: PMC6887992 DOI: 10.3390/ijms20225715] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Muscular contraction is a fundamental phenomenon in all animals; without it life as we know it would be impossible. The basic mechanism in muscle, including heart muscle, involves the interaction of the protein filaments myosin and actin. Motility in all cells is also partly based on similar interactions of actin filaments with non-muscle myosins. Early studies of muscle contraction have informed later studies of these cellular actin-myosin systems. In muscles, projections on the myosin filaments, the so-called myosin heads or cross-bridges, interact with the nearby actin filaments and, in a mechanism powered by ATP-hydrolysis, they move the actin filaments past them in a kind of cyclic rowing action to produce the macroscopic muscular movements of which we are all aware. In this special issue the papers and reviews address different aspects of the actin-myosin interaction in muscle as studied by a plethora of complementary techniques. The present overview provides a brief and elementary introduction to muscle structure and function and the techniques used to study it. It goes on to give more detailed descriptions of what is known about muscle components and the cross-bridge cycle using structural biology techniques, particularly protein crystallography, electron microscopy and X-ray diffraction. It then has a quick look at muscle mechanics and it summarises what can be learnt about how muscle works based on the other studies covered in the different papers in the special issue. A picture emerges of the main molecular steps involved in the force-producing process; steps that are also likely to be seen in non-muscle myosin interactions with cellular actin filaments. Finally, the remarkable advances made in studying the effects of mutations in the contractile assembly in causing specific muscle diseases, particularly those in heart muscle, are outlined and discussed.
Collapse
|
6
|
Månsson A. The effects of inorganic phosphate on muscle force development and energetics: challenges in modelling related to experimental uncertainties. J Muscle Res Cell Motil 2019; 42:33-46. [PMID: 31620962 PMCID: PMC7932973 DOI: 10.1007/s10974-019-09558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/09/2019] [Indexed: 02/03/2023]
Abstract
Muscle force and power are developed by myosin cross-bridges, which cyclically attach to actin, undergo a force-generating transition and detach under turnover of ATP. The force-generating transition is intimately associated with release of inorganic phosphate (Pi) but the exact sequence of events in relation to the actual Pi release step is controversial. Details of this process are reflected in the relationships between [Pi] and the developed force and shortening velocity. In order to account for these relationships, models have proposed branched kinetic pathways or loose coupling between biochemical and force-generating transitions. A key hypothesis underlying the present study is that such complexities are not required to explain changes in the force–velocity relationship and ATP turnover rate with altered [Pi]. We therefore set out to test if models without branched kinetic paths and Pi-release occurring before the main force-generating transition can account for effects of varied [Pi] (0.1–25 mM). The models tested, one assuming either linear or non-linear cross-bridge elasticity, account well for critical aspects of muscle contraction at 0.5 mM Pi but their capacity to account for the maximum power output vary. We find that the models, within experimental uncertainties, account for the relationship between [Pi] and isometric force as well as between [Pi] and the velocity of shortening at low loads. However, in apparent contradiction with available experimental findings, the tested models produce an anomalous force–velocity relationship at elevated [Pi] and high loads with more than one possible velocity for a given load. Nevertheless, considering experimental uncertainties and effects of sarcomere non-uniformities, these discrepancies are insufficient to refute the tested models in favour of more complex alternatives.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Universitetskajen, 391 82, Kalmar, Sweden.
| |
Collapse
|
7
|
Myosin Cross-Bridge Behaviour in Contracting Muscle-The T 1 Curve of Huxley and Simmons (1971) Revisited. Int J Mol Sci 2019; 20:ijms20194892. [PMID: 31581677 PMCID: PMC6801930 DOI: 10.3390/ijms20194892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022] Open
Abstract
The stiffness of the myosin cross-bridges is a key factor in analysing possible scenarios to explain myosin head changes during force generation in active muscles. The seminal study of Huxley and Simmons (1971: Nature233: 533) suggested that most of the observed half-sarcomere instantaneous compliance (=1/stiffness) resides in the myosin heads. They showed with a so-called T1 plot that, after a very fast release, the half-sarcomere tension reduced to zero after a step size of about 60Å (later with improved experiments reduced to 40Å). However, later X-ray diffraction studies showed that myosin and actin filaments themselves stretch slightly under tension, which means that most (at least two-thirds) of the half sarcomere compliance comes from the filaments and not from cross-bridges. Here we have used a different approach, namely to model the compliances in a virtual half sarcomere structure in silico. We confirm that the T1 curve comes almost entirely from length changes in the myosin and actin filaments, because the calculated cross-bridge stiffness (probably greater than 0.4 pN/Å) is higher than previous studies have suggested. Our model demonstrates that the formulations produced by previous authors give very similar results to our model if the same starting parameters are used. However, we find that it is necessary to model the X-ray diffraction data as well as mechanics data to get a reliable estimate of the cross-bridge stiffness. In the light of the high cross-bridge stiffness found in the present study, we present a plausible modified scenario to describe aspects of the myosin cross-bridge cycle in active muscle. In particular, we suggest that, apart from the filament compliances, most of the cross-bridge contribution to the instantaneous T1 response may come from weakly-bound myosin heads, not myosin heads in strongly attached states. The strongly attached heads would still contribute to the T1 curve, but only in a very minor way, with a stiffness that we postulate could be around 0.1 pN/Å, a value which would generate a working stroke close to 100 Å from the hydrolysis of one ATP molecule. The new model can serve as a tool to calculate sarcomere elastic properties for any vertebrate striated muscle once various parameters have been determined (e.g., tension, T1 intercept, temperature, X-ray diffraction spacing results).
Collapse
|
8
|
Månsson A. Comparing models with one versus multiple myosin-binding sites per actin target zone: The power of simplicity. J Gen Physiol 2019; 151:578-592. [PMID: 30872560 PMCID: PMC6445577 DOI: 10.1085/jgp.201812301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/16/2019] [Indexed: 01/21/2023] Open
Abstract
Mechanokinetic statistical models describe the mechanisms of muscle contraction on the basis of the average behavior of a large ensemble of actin-myosin motors. Such models often assume that myosin II motor domains bind to regularly spaced, discrete target zones along the actin-based thin filaments and develop force in a series of strain-dependent transitions under the turnover of ATP. The simplest models assume that there is just one myosin-binding site per target zone and a uniform spatial distribution of the myosin motor domains in relation to each site. However, most of the recently developed models assume three myosin-binding sites per target zone, and some models include a spatially explicit 3-D treatment of the myofilament lattice and thereby of the geometry of the actin-myosin contact points. Here, I show that the predictions for steady-state contractile behavior of muscle are very similar whether one or three myosin-binding sites per target zone is assumed, provided that the model responses are appropriately scaled to the number of sites. Comparison of the model predictions for isometrically contracting mammalian muscle cells suggests that each target zone contains three or more myosin-binding sites. Finally, I discuss the strengths and weaknesses of one-site spatially inexplicit models in relation to three-site models, including those that take into account the detailed 3-D geometry of the myofilament lattice. The results of this study suggest that single-site models, with reduced computational cost compared with multisite models, are useful for several purposes, e.g., facilitated molecular mechanistic insights.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
9
|
Månsson A, Persson M, Shalabi N, Rassier DE. Nonlinear Actomyosin Elasticity in Muscle? Biophys J 2018; 116:330-346. [PMID: 30606448 PMCID: PMC6350078 DOI: 10.1016/j.bpj.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Cyclic interactions between myosin II motor domains and actin filaments that are powered by turnover of ATP underlie muscle contraction and have key roles in motility of nonmuscle cells. The elastic characteristics of actin-myosin cross-bridges are central in the force-generating process, and disturbances in these properties may lead to disease. Although the prevailing paradigm is that the cross-bridge elasticity is linear (Hookean), recent single-molecule studies suggest otherwise. Despite convincing evidence for substantial nonlinearity of the cross-bridge elasticity in the single-molecule work, this finding has had limited influence on muscle physiology and physiology of other ordered cellular actin-myosin ensembles. Here, we use a biophysical modeling approach to close the gap between single molecules and physiology. The model is used for analysis of available experimental results in the light of possible nonlinearity of the cross-bridge elasticity. We consider results obtained both under rigor conditions (in the absence of ATP) and during active muscle contraction. Our results suggest that a wide range of experimental findings from mechanical experiments on muscle cells are consistent with nonlinear actin-myosin elasticity similar to that previously found in single molecules. Indeed, the introduction of nonlinear cross-bridge elasticity into the model improves the reproduction of key experimental results and eliminates the need for force dependence of the ATP-induced detachment rate, consistent with observations in other single-molecule studies. The findings have significant implications for the understanding of key features of actin-myosin-based production of force and motion in living cells, particularly in muscle, and for the interpretation of experimental results that rely on stiffness measurements on cells or myofibrils.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| | - Malin Persson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden; Department of Kinesiology and Physical Education, McGill University, Montreal, Canada; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nabil Shalabi
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Do Actomyosin Single-Molecule Mechanics Data Predict Mechanics of Contracting Muscle? Int J Mol Sci 2018; 19:ijms19071863. [PMID: 29941816 PMCID: PMC6073448 DOI: 10.3390/ijms19071863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
In muscle, but not in single-molecule mechanics studies, actin, myosin and accessory proteins are incorporated into a highly ordered myofilament lattice. In view of this difference we compare results from single-molecule studies and muscle mechanics and analyze to what degree data from the two types of studies agree with each other. There is reasonable correspondence in estimates of the cross-bridge power-stroke distance (7–13 nm), cross-bridge stiffness (~2 pN/nm) and average isometric force per cross-bridge (6–9 pN). Furthermore, models defined on the basis of single-molecule mechanics and solution biochemistry give good fits to experimental data from muscle. This suggests that the ordered myofilament lattice, accessory proteins and emergent effects of the sarcomere organization have only minor modulatory roles. However, such factors may be of greater importance under e.g., disease conditions. We also identify areas where single-molecule and muscle data are conflicting: (1) whether force generation is an Eyring or Kramers process with just one major power-stroke or several sub-strokes; (2) whether the myofilaments and the cross-bridges have Hookean or non-linear elasticity; (3) if individual myosin heads slip between actin sites under certain conditions, e.g., in lengthening; or (4) if the two heads of myosin cooperate.
Collapse
|
11
|
Ranatunga KW. Temperature Effects on Force and Actin⁻Myosin Interaction in Muscle: A Look Back on Some Experimental Findings. Int J Mol Sci 2018; 19:E1538. [PMID: 29786656 PMCID: PMC5983754 DOI: 10.3390/ijms19051538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/23/2023] Open
Abstract
Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption.
Collapse
Affiliation(s)
- K W Ranatunga
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
12
|
Abstract
Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017.
Collapse
Affiliation(s)
| | - Gerald E Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Roberts TJ. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. ACTA ACUST UNITED AC 2016; 219:266-75. [PMID: 26792339 DOI: 10.1242/jeb.124446] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Muscle force production occurs within an environment of tissues that exhibit spring-like behavior, and this elasticity is a critical determinant of muscle performance during locomotion. Muscle force and power output both depend on the speed of contraction, as described by the isotonic force-velocity curve. By influencing the speed of contractile elements, elastic structures can have a profound effect on muscle force, power and work. In very rapid movements, elastic mechanisms can amplify muscle power by storing the work of muscle contraction slowly and releasing it rapidly. When energy must be dissipated rapidly, such as in landing from a jump, energy stored rapidly in elastic elements can be released more slowly to stretch muscle contractile elements, reducing the power input to muscle and possibly protecting it from damage. Elastic mechanisms identified so far rely primarily on in-series tendons, but many structures within muscles exhibit spring-like properties. Actomyosin cross-bridges, actin and myosin filaments, titin, and the connective tissue scaffolding of the extracellular matrix all have the potential to store and recover elastic energy during muscle contraction. The potential contribution of these elements can be assessed from their stiffness and estimates of the strain they undergo during muscle function. Such calculations provide boundaries for the possible roles these springs might play in locomotion, and may help to direct future studies of the uses of elastic elements in muscle.
Collapse
Affiliation(s)
- Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
14
|
Temperature effect on the chemomechanical regulation of substeps within the power stroke of a single Myosin II. Sci Rep 2016; 6:19506. [PMID: 26786569 PMCID: PMC4726395 DOI: 10.1038/srep19506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/14/2015] [Indexed: 11/08/2022] Open
Abstract
Myosin IIs in the skeletal muscle are highly efficient nanoscale machines evolved in nature. Understanding how they function can not only bring insights into various biological processes but also provide guidelines to engineer synthetic nanoscale motors working in the vicinity of thermal noise. Though it was clearly demonstrated that the behavior of a skeletal muscle fiber, or that of a single myosin was strongly affected by the temperature, how exactly the temperature affects the kinetics of a single myosin is not fully understood. By adapting the newly developed transitional state model, which successfully explained the intriguing motor force regulation during skeletal muscle contraction, here we systematically explain how exactly the power stroke of a single myosin proceeds, with the consideration of the chemomechanical regulation of sub-steps within the stroke. The adapted theory is then utilized to investigate the temperature effect on various aspects of the power stroke. Our analysis suggests that, though swing rates, the isometric force, and the maximal stroke size all strongly vary with the temperature, the temperature can have a very small effect on the releasable elastic energy within the power stroke.
Collapse
|
15
|
Poorly understood aspects of striated muscle contraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:245154. [PMID: 25961006 PMCID: PMC4415482 DOI: 10.1155/2015/245154] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
Abstract
Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.
Collapse
|
16
|
Offer G, Ranatunga KW. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle. J Physiol 2015; 593:1997-2016. [PMID: 25564737 DOI: 10.1113/jphysiol.2014.284992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/03/2015] [Indexed: 11/08/2022] Open
Abstract
The isometric tetanic tension of skeletal muscle increases with temperature because attached crossbridge states bearing a relatively low force convert to those bearing a higher force. It was previously proposed that the tension-generating step(s) in the crossbridge cycle was highly endothermic and was therefore itself directly targeted by changes in temperature. However, this did not explain why a rapid rise in temperature (a temperature jump) caused a much slower rate of rise of tension than a rapid length step. This led to suggestions that the step targeted by a temperature rise is not the tension-generating step but is an extra step in the attached pathway of the crossbridge cycle, perhaps located on a parallel pathway. This enigma has been a major obstacle to a full understanding of the operation of the crossbridge cycle. We have now used a previously developed mechano-kinetic model of the crossbridge cycle in frog muscle to simulate the temperature dependence of isometric tension and shortening velocity. We allowed all five steps in the cycle to be temperature-sensitive. Models with different starting combinations of enthalpy changes and activation enthalpies for the five steps were refined by downhill simplex runs and scored by their ability to fit experimental data on the temperature dependence of isometric tension and the relationship between force and shortening velocity in frog muscle. We conclude that the first tension-generating step may be weakly endothermic and that the rise of tension with temperature is largely driven by the preceding two strongly endothermic steps of ATP hydrolysis and attachment of M.ADP.Pi to actin. The refined model gave a reasonable fit to the available experimental data and after a temperature jump the overall rate of tension rise was much slower than after a length step as observed experimentally. The findings aid our understanding of the crossbridge cycle by showing that it may not be necessary to include an additional temperature-sensitive step.
Collapse
Affiliation(s)
- Gerald Offer
- Muscle Contraction Group, School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, UK
| | | |
Collapse
|
17
|
The myofilament elasticity and its effect on kinetics of force generation by the myosin motor. Arch Biochem Biophys 2014; 552-553:108-16. [DOI: 10.1016/j.abb.2014.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
|
18
|
Holland A, Ohlendieck K. Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Rev Proteomics 2014; 10:239-57. [DOI: 10.1586/epr.13.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Fusi L, Brunello E, Reconditi M, Piazzesi G, Lombardi V. The non-linear elasticity of the muscle sarcomere and the compliance of myosin motors. J Physiol 2013; 592:1109-18. [PMID: 24344166 DOI: 10.1113/jphysiol.2013.265983] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Force in striated muscle is due to attachment of the heads of the myosin, the molecular motors extending from the myosin filament, to the actin filament in each half-sarcomere, the functional unit where myosin motors act in parallel. Mechanical and X-ray structural evidence indicates that at the plateau of isometric contraction (force T0), less than half of the elastic strain of the half-sarcomere is due to the strain in the array of myosin motors (s), with the remainder being accounted for by the compliance of filaments acting as linear elastic elements in series with the motor array. Early during the development of isometric force, however, the half-sarcomere compliance has been found to be less than that expected from the linear elastic model assumed above, and this non-linearity may affect the estimate of s. This question is investigated here by applying nanometre-microsecond-resolution mechanics to single intact fibres from frog skeletal muscle at 4 °C, to record the mechanical properties of the half-sarcomere throughout the development of force in isometric contraction. The results are interpreted with mechanical models to estimate the compliance of the myosin motors. Our conclusions are as follows: (i) early during the development of an isometric tetanus, an elastic element is present in parallel with the myosin motors, with a compliance of ∼200 nm MPa(-1) (∼20 times larger than the compliance of the motor array at T0); and (ii) during isometric contraction, s is 1.66 ± 0.05 nm, which is not significantly different from the value estimated with the linear elastic model.
Collapse
Affiliation(s)
- Luca Fusi
- Laboratory of Physiology, Department of Biology, Via G. Sansone 1, 50019 Sesto Fiorentino (FI), Italy.
| | | | | | | | | |
Collapse
|
20
|
Flexibility within the heads of muscle myosin-2 molecules. J Mol Biol 2013; 426:894-907. [PMID: 24333017 PMCID: PMC3919154 DOI: 10.1016/j.jmb.2013.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 11/26/2022]
Abstract
We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~ 23 pN·nm/rad2 is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor–lever junction. Elasticity of muscle crossbridges is important, but its structural basis is obscure. Muscle myosin heads from rabbit, scallop and chicken share a common structure. The lever domain hinges about its connection with the motor domain. The stiffness of the motor–lever hinge is lower than estimates for crossbridges. Flexibility within the myosin head can be the basis of crossbridge stiffness.
Collapse
|
21
|
Kaya M, Higuchi H. Stiffness, working stroke, and force of single-myosin molecules in skeletal muscle: elucidation of these mechanical properties via nonlinear elasticity evaluation. Cell Mol Life Sci 2013; 70:4275-92. [PMID: 23685901 PMCID: PMC11113998 DOI: 10.1007/s00018-013-1353-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/27/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
In muscles, the arrays of skeletal myosin molecules interact with actin filaments and continuously generate force at various contraction speeds. Therefore, it is crucial for myosin molecules to generate force collectively and minimize the interference between individual myosin molecules. Knowledge of the elasticity of myosin molecules is crucial for understanding the molecular mechanisms of muscle contractions because elasticity directly affects the working and drag (resistance) force generation when myosin molecules are positively or negatively strained. The working stroke distance is also an important mechanical property necessary for elucidation of the thermodynamic efficiency of muscle contractions at the molecular level. In this review, we focus on these mechanical properties obtained from single-fiber and single-molecule studies and discuss recent findings associated with these mechanical properties. We also discuss the potential molecular mechanisms associated with reduction of the drag effect caused by negatively strained myosin molecules.
Collapse
Affiliation(s)
- Motoshi Kaya
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan,
| | | |
Collapse
|
22
|
Offer G, Ranatunga K. A cross-bridge cycle with two tension-generating steps simulates skeletal muscle mechanics. Biophys J 2013; 105:928-40. [PMID: 23972845 PMCID: PMC3752108 DOI: 10.1016/j.bpj.2013.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022] Open
Abstract
We examined whether cross-bridge cycle models with one or two tension-generating steps can account for the force-velocity relation of and tension response to length steps of frog skeletal muscle. Transition-state theory defined the strain dependence of the rate constants. The filament stiffness was non-Hookean. Models were refined against experimental data by simulated annealing and downhill simplex runs. Models with one tension-generating step were rejected, as they had a low efficiency and fitted the experimental data relatively poorly. The best model with two tension-generating steps (stroke distances 5.6 and 4.6 nm) and a cross-bridge stiffness of 1.7 pN/nm gave a good account of the experimental data. The two tensing steps allow an efficiency of up to 38% during shortening. In an isometric contraction, 54.7% of the attached heads were in a pre-tension-generating state, 44.5% of the attached heads had undergone the first tension-generating step, and only 0.8% had undergone both tension-generating steps; they bore 34%, 64%, and 2%, respectively, of the isometric tension. During slow shortening, the second tensing step made a greater contribution. During lengthening, up to 93% of the attached heads were in a pre-tension-generating state yet bore elevated tension by being dragged to high strains before detaching.
Collapse
Affiliation(s)
- Gerald Offer
- Muscle Contraction Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - K.W. Ranatunga
- Muscle Contraction Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
23
|
Nocella M, Bagni MA, Cecchi G, Colombini B. Mechanism of force enhancement during stretching of skeletal muscle fibres investigated by high time-resolved stiffness measurements. J Muscle Res Cell Motil 2013; 34:71-81. [DOI: 10.1007/s10974-012-9335-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
|
24
|
Mechanism of force enhancement during and after lengthening of active muscle: a temperature dependence study. J Muscle Res Cell Motil 2012; 33:313-25. [PMID: 22706970 DOI: 10.1007/s10974-012-9307-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
The aim of the present study was to examine the temperature dependence of active force in lengthening and shortening muscle. Experiments were done, in vitro, on bundles of intact fibres (fibre length L(0) ~2 mm; sarcomere length ~2.5 μm) isolated from a rat fast muscle (flexor hallucis brevis) and a ramp length change of 5-7% L(0) was applied on the plateau of an isometric tetanic contraction. Ramp lengthening increased and ramp shortening decreased the muscle tension to new approximately steady levels in a velocity-dependent way. The isometric tension and the lower steady tension reached at a given shortening velocity, increased with warming from 10 to 35 °C and the relation between tension and reciprocal absolute temperature was sigmoidal. However, the tension-temperature curve of shortening muscle was sharper and shifted to higher temperature with increased velocity. In contrast, the enhanced steady tension during lengthening at a given velocity was largely temperature-insensitive within the same temperature range; we hypothesize that the tension-temperature curve may be shifted to lower temperatures in lengthening muscle. Consequently, when normalised to the isometric tension at each temperature, the tension during lengthening at a given velocity decreased exponentially with increase of temperature. The residual force enhancement that remains after ramp lengthening showed a similar behaviour and was markedly reduced in warming from 10 to 35 °C. The findings are consistent with the thesis that active force generation in muscle is endothermic and strain-sensitive; during shortening with a faster crossbridge cycle it becomes more pronounced, but during lengthening it becomes depressed as the cycle slows in a velocity-dependent way. The residual force enhancement may be caused by the same process in addition to non-crossbridge mechanism(s).
Collapse
|
25
|
Experiments and mechanochemical modeling of smooth muscle contraction: Significance of filament overlap. J Theor Biol 2012; 297:176-86. [DOI: 10.1016/j.jtbi.2011.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 11/21/2022]
|
26
|
Park-Holohan S, Linari M, Reconditi M, Fusi L, Brunello E, Irving M, Dolfi M, Lombardi V, West TG, Curtin NA, Woledge RC, Piazzesi G. Mechanics of myosin function in white muscle fibres of the dogfish, Scyliorhinus canicula. J Physiol 2012; 590:1973-88. [PMID: 22310308 PMCID: PMC3491701 DOI: 10.1113/jphysiol.2011.217133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contractile properties of muscle fibres have been extensively investigated by fast perturbation in sarcomere length to define the mechanical characteristics of myofilaments and myosin heads that underpin refined models of the acto-myosin cycle. Comparison of published data from intact fast-twitch fibres of frog muscle and demembranated fibres from fast muscle of rabbit shows that stiffness of the rabbit myosin head is only ∼62% of that in frog. To clarify if and how much the mechanical characteristics of the filaments and myosin heads vary in muscles of different animals we apply the same high resolution mechanical methods, in combination with X-ray diffraction, to fast-twitch fibres from the dogfish (Scyliorhinus canicula). The values of equivalent filament compliance (Cf) measured by X-ray diffraction and in mechanical experiments are not significantly different; the best estimate from combining these values is 17.1 ± 1.0 nm MPa−1. This value is larger than Cf in frog, 13.0 ± 0.4 nm MPa−1. The longer thin filaments in dogfish account for only part of this difference. The average isometric force exerted by each attached myosin head at 5°C, 4.5 pN, and the maximum sliding distance accounted for by the myosin working stroke, 11 nm, are similar to those in frog, while the average myosin head stiffness of dogfish (1.98 ± 0.31 pN nm−1) is smaller than that of frog (2.78 ± 0.30 pN nm−1). Taken together these results indicate that the working stroke responsible for the generation of isometric force is a larger fraction of the total myosin head working stroke in the dogfish than in the frog.
Collapse
Affiliation(s)
- S Park-Holohan
- Molecular Medicine, National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Clarification in relation to the review paper "Crossbridge and filament compliance in muscle: implications for tension generation and lever arm swing". J Muscle Res Cell Motil 2011; 32:3; author reply 5-6. [PMID: 21387115 DOI: 10.1007/s10974-011-9244-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
28
|
Stiffness and number of crossbridges attached in active frog muscle: a reply to Professor Lombardi. J Muscle Res Cell Motil 2011. [DOI: 10.1007/s10974-011-9243-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|