1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Linke WA. Stretching the story of titin and muscle function. J Biomech 2023; 152:111553. [PMID: 36989971 DOI: 10.1016/j.jbiomech.2023.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The discovery of the giant protein titin, also known as connectin, dates almost half a century back. In this review, I recapitulate major advances in the discovery of the titin filaments and the recognition of their properties and function until today. I briefly discuss how our understanding of the layout and interactions of titin in muscle sarcomeres has evolved and review key facts about the titin sequence at the gene (TTN) and protein levels. I also touch upon properties of titin important for the stability of the contractile units and the assembly and maintenance of sarcomeric proteins. The greater part of my discussion centers around the mechanical function of titin in skeletal muscle. I cover milestones of research on titin's role in stretch-dependent passive tension development, recollect the reasons behind the enormous elastic diversity of titin, and provide an update on the molecular mechanisms of titin elasticity, details of which are emerging even now. I reflect on current knowledge of how muscle fibers behave mechanically if titin stiffness is removed and how titin stiffness can be dynamically regulated, such as by posttranslational modifications or calcium binding. Finally, I highlight novel and exciting, but still controversially discussed, insight into the role titin plays in active tension development, such as length-dependent activation and contraction from longer muscle lengths.
Collapse
Affiliation(s)
- Wolfgang A Linke
- Institute of Physiology II, University of Münster, Germany; Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| |
Collapse
|
3
|
Hahn D, Han SW, Joumaa V. The history-dependent features of muscle force production: A challenge to the cross-bridge theory and their functional implications. J Biomech 2023; 152:111579. [PMID: 37054597 DOI: 10.1016/j.jbiomech.2023.111579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The cross-bridge theory predicts that muscle force is determined by muscle length and the velocity of active muscle length changes. However, before the formulation of the cross-bridge theory, it had been observed that the isometric force at a given muscle length is enhanced or depressed depending on active muscle length changes before that given length is reached. These enhanced and depressed force states are termed residual force enhancement (rFE) and residual force depression (rFD), respectively, and together they are known as the history-dependent features of muscle force production. In this review, we introduce early attempts in explaining rFE and rFD before we discuss more recent research from the past 25 years which has contributed to a better understanding of the mechanisms underpinning rFE and rFD. Specifically, we discuss the increasing number of findings on rFE and rFD which challenge the cross-bridge theory and propose that the elastic element titin plays a role in explaining muscle history-dependence. Accordingly, new three-filament models of force production including titin seem to provide better insight into the mechanism of muscle contraction. Complementary to the mechanisms behind muscle history-dependence, we also show various implications for muscle history-dependence on in-vivo human muscle function such as during stretch-shortening cycles. We conclude that titin function needs to be better understood if a new three-filament muscle model which includes titin, is to be established. From an applied perspective, it remains to be elucidated how muscle history-dependence affects locomotion and motor control, and whether history-dependent features can be changed by training.
Collapse
Affiliation(s)
- Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University, Bochum, Germany; School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Seong-Won Han
- Institute of Physiology II, Faculty of Medicine, University of Münster, Germany.
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
4
|
Tomalka A. Eccentric muscle contractions: from single muscle fibre to whole muscle mechanics. Pflugers Arch 2023; 475:421-435. [PMID: 36790515 PMCID: PMC10011336 DOI: 10.1007/s00424-023-02794-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Eccentric muscle loading encompasses several unique features compared to other types of contractions. These features include increased force, work, and performance at decreased oxygen consumption, reduced metabolic cost, improved energy efficiency, as well as decreased muscle activity. This review summarises explanatory approaches to long-standing questions in terms of muscular contraction dynamics and molecular and cellular mechanisms underlying eccentric muscle loading. Moreover, this article intends to underscore the functional link between sarcomeric components, emphasising the fundamental role of titin in skeletal muscle. The giant filament titin reveals versatile functions ranging from sarcomere organisation and maintenance, providing passive tension and elasticity, and operates as a mechanosensory and signalling platform. Structurally, titin consists of a viscoelastic spring segment that allows activation-dependent coupling to actin. This titin-actin interaction can explain linear force increases in active lengthening experiments in biological systems. A three-filament model of skeletal muscle force production (mediated by titin) is supposed to overcome significant deviations between experimental observations and predictions by the classic sliding-filament and cross-bridge theories. Taken together, this review intends to contribute to a more detailed understanding of overall muscle behaviour and force generation-from a microscopic sarcomere level to a macroscopic multi-joint muscle level-impacting muscle modelling, the understanding of muscle function, and disease.
Collapse
Affiliation(s)
- André Tomalka
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
5
|
Contini M, Altman D, Cornachione A, Rassier DE, Bagni MA. An increase in force after stretch of diaphragm fibers and myofibrils is accompanied by an increase in sarcomere length non-uniformities and Ca 2+ sensitivity. Am J Physiol Cell Physiol 2022; 323:C14-C28. [PMID: 35613356 DOI: 10.1152/ajpcell.00394.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When muscle fibers from limb muscles are stretched while activated, the force increases to a steady-state level that is higher than that produced during isometric contractions at a corresponding sarcomere length, a phenomenon known as residual force enhancement (RFE). The mechanisms responsible for the RFE are an increased stiffness of titin molecules which may lead to an increased Ca2+ sensitivity of the contractile apparatus,and the development of sarcomere length non-uniformities. RFE is not observed in cardiac muscles, which makes this phenomenon specific to certain preparations. The aim of this study was to investigate if the RFE is present in the diaphragm, and its potential association with an increased Ca2+ sensitivity and the development of sarcomere length non-uniformities. We used two preparations: single intact fibers and myofibrils isolated from the diaphragm from mice. We investigated RFE in a variety of lengths across the force-length relationship. RFE was observed in both preparations at all lengths investigated, and was larger with increasing magnitudes of stretch. RFE was accompanied by an increased Ca2+ sensitivity as shown by a change in the force-pCa2+-curve, and increased sarcomere length non-uniformities. Therefore, RFE is a phenomenon commonly observed in skeletal muscles, with mechanisms that are similar across preparations.
Collapse
Affiliation(s)
- Massimo Contini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - David Altman
- Department of Physics, Willamette University, Salem, OR, United States
| | - Anabelle Cornachione
- Department of Physiological Sciences, Federal University of São Carlos, São Paulo, Brazil
| | | | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| |
Collapse
|
6
|
Tsiros C, Punch E, Schaffter E, Apel S, Gage MJ. Identification of the domains within the N2A region of titin that regulate binding to actin. Biochem Biophys Res Commun 2021; 589:147-151. [PMID: 34922195 DOI: 10.1016/j.bbrc.2021.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/02/2022]
Abstract
Titin, the largest muscle protein, plays an important role in passive tension, sarcomeric integrity and cell signaling within the muscle. Recent work has also highlighted a role for titin in active muscle and the N2A region found in skeletal muscle titin and in some isoforms of cardiac titin has been linked to this function. The N2A region is a multi-domain region composed of four immunoglobulin domains (I80-I83) and a disordered region called the insertion sequence. Previously, our lab has shown that the N2A region binds F-actin in a calcium dependent manner, but it is not known which domains within this region are critical for this binding to occur. In this work, we have used co-sedimentation to demonstrate that only constructs containing the I80 domain are capable of binding F-actin. In addition, binding was only observed in constructs containing at least 3 immunoglobulin domains suggesting a length-dependence to binding. Finally, the calcium-dependence of N2A binding is lost when I83 is not present, consistent with the calcium stabilization that has been reported for this domain. Based on these results, we propose that I80 is critical for initiating binding to F-actin and that I83 is responsible for the calcium dependence.
Collapse
Affiliation(s)
- Christopher Tsiros
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Emily Punch
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Emily Schaffter
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Sabrina Apel
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA; UMass Movement Center, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
7
|
Shi J, Watanabe D, Wada M. Effects of vigorous isometric muscle contraction on titin stiffness-related contractile properties in rat fast-twitch muscles. Am J Physiol Regul Integr Comp Physiol 2021; 321:R858-R868. [PMID: 34668430 DOI: 10.1152/ajpregu.00189.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
This study was conducted to examine the effects of an acute bout of vigorous isometric contractions on titin stiffness-related contractile properties in rat fast-twitch skeletal muscles. Intact gastrocnemius muscles were electrically stimulated in situ until the force was reduced to ∼50% of the initial force. Immediately after cessation of the stimulation, the superficial regions of the muscles were dissected and subjected to biochemical and skinned fiber analyses. The stimulation resulted in a decrease in the titin-based passive force. The amounts of fragmented titin were unchanged by the stimulation. Protein kinase Cα-treatment increased the passive force in stimulated fibers to resting levels. The stimulation had no effect on the maximum Ca2+-activated force (max Ca2+ force) at a sarcomere length (SL) of 2.4 μm and decreased myofibrillar (my)-Ca2+ sensitivity at 2.6-μm SL. Stretching the SL to 3.0 μm led to the augmentation of the max Ca2+ force and my-Ca2+ sensitivity in both rested and stimulated fibers. For the max Ca2+ force, the extent of the increase was smaller in stimulated than in rested fibers, whereas for my-Ca2+ sensitivity, it was higher in stimulated than in rested fibers. These results suggest that vigorous isometric contractions decrease the titin-based passive force, possibly because of a reduction in phosphorylation by protein kinase Cα, and that the decreased titin stiffness may contribute, at least in part, to muscle fatigue.
Collapse
Affiliation(s)
- Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima-shi, Japan
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| |
Collapse
|
8
|
Mechanisms underlying performance impairments following prolonged static stretching without a comprehensive warm-up. Eur J Appl Physiol 2020; 121:67-94. [PMID: 33175242 DOI: 10.1007/s00421-020-04538-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/21/2020] [Indexed: 01/28/2023]
Abstract
Whereas a variety of pre-exercise activities have been incorporated as part of a "warm-up" prior to work, combat, and athletic activities for millennia, the inclusion of static stretching (SS) within a warm-up has lost favor in the last 25 years. Research emphasized the possibility of SS-induced impairments in subsequent performance following prolonged stretching without proper dynamic warm-up activities. Proposed mechanisms underlying stretch-induced deficits include both neural (i.e., decreased voluntary activation, persistent inward current effects on motoneuron excitability) and morphological (i.e., changes in the force-length relationship, decreased Ca2+ sensitivity, alterations in parallel elastic component) factors. Psychological influences such as a mental energy deficit and nocebo effects could also adversely affect performance. However, significant practical limitations exist within published studies, e.g., long-stretching durations, stretching exercises with little task specificity, lack of warm-up before/after stretching, testing performed immediately after stretch completion, and risk of investigator and participant bias. Recent research indicates that appropriate durations of static stretching performed within a full warm-up (i.e., aerobic activities before and task-specific dynamic stretching and intense physical activities after SS) have trivial effects on subsequent performance with some evidence of improved force output at longer muscle lengths. For conditions in which muscular force production is compromised by stretching, knowledge of the underlying mechanisms would aid development of mitigation strategies. However, these mechanisms are yet to be perfectly defined. More information is needed to better understand both the warm-up components and mechanisms that contribute to performance enhancements or impairments when SS is incorporated within a pre-activity warm-up.
Collapse
|
9
|
Abstract
Relaxed skeletal muscle has an inbuilt resistance to movement. In particular, the resistance manifests itself as a substantial stiffness for small movements. The stiffness is impermanent, because it forms only when the muscle is stationary for some time and is reduced upon active or passive movement. Because the resistance to movement increases with time at rest and is reduced by movement, this behavior has become known as muscle thixotropy. In this short review, we describe the phenomenon of thixotropy and illustrate its significance in postural control with particular emphasis on human standing. We show how thixotropy came to be unambiguously associated with muscle mechanics and we review present knowledge of the molecular basis of thixotropic behavior. Specifically, we examine how recent knowledge about titin, and about the control of cross-bridge cycling, has impacted on the role of non-cross-bridge mechanisms and cross-bridge mechanisms in explaining thixotropy. We describe how thixotropic changes in muscle stiffness that occur during transitions from posture to movement can be tracked by analyzing physiological tremor. Finally, because skeletal muscle contains sensory receptors, and because some of these receptors are themselves thixotropic, we outline some of the consequences of muscle thixotropy for proprioception.
Collapse
Affiliation(s)
- Martin Lakie
- School of Sport, Exercise and Rehabilitation, University of Birmingham , Birmingham , United Kingdom
| | - Kenneth S Campbell
- Department of Physiology, College of Medicine, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
10
|
Pertici I, Caremani M, Reconditi M. A mechanical model of the half-sarcomere which includes the contribution of titin. J Muscle Res Cell Motil 2019; 40:29-41. [DOI: 10.1007/s10974-019-09508-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/08/2019] [Indexed: 11/25/2022]
|
11
|
Nishikawa KC, Monroy JA, Tahir U. Muscle Function from Organisms to Molecules. Integr Comp Biol 2019; 58:194-206. [PMID: 29850810 DOI: 10.1093/icb/icy023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gaps in our understanding of muscle contraction at the molecular level limit the ability to predict in vivo muscle forces in humans and animals during natural movements. Because muscles function as motors, springs, brakes, or struts, it is not surprising that uncertainties remain as to how sarcomeres produce these different behaviors. Current theories fail to explain why a single extra stimulus, added shortly after the onset of a train of stimuli, doubles the rate of force development. When stretch and doublet stimulation are combined in a work loop, muscle force doubles and work increases by 50% per cycle, yet no theory explains why this occurs. Current theories also fail to predict persistent increases in force after stretch and decreases in force after shortening. Early studies suggested that all of the instantaneous elasticity of muscle resides in the cross-bridges. Subsequent cross-bridge models explained the increase in force during active stretch, but required ad hoc assumptions that are now thought to be unreasonable. Recent estimates suggest that cross-bridges account for only ∼12% of the energy stored by muscles during active stretch. The inability of cross-bridges to account for the increase in force that persists after active stretching led to development of the sarcomere inhomogeneity theory. Nearly all predictions of this theory fail, yet the theory persists. In stretch-shortening cycles, muscles with similar activation and contractile properties function as motors or brakes. A change in the phase of activation relative to the phase of length changes can convert a muscle from a motor into a spring or brake. Based on these considerations, it is apparent that the current paradigm of muscle mechanics is incomplete. Recent advances in our understanding of giant muscle proteins, including twitchin and titin, allow us to expand our vision beyond cross-bridges to understand how muscles contribute to the biomechanics and control of movement.
Collapse
Affiliation(s)
- Kiisa C Nishikawa
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-4185, USA
| | - Jenna A Monroy
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711-5916, USA
| | - Uzma Tahir
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-4185, USA
| |
Collapse
|
12
|
Powers JD, Williams CD, Regnier M, Daniel TL. A Spatially Explicit Model Shows How Titin Stiffness Modulates Muscle Mechanics and Energetics. Integr Comp Biol 2019; 58:186-193. [PMID: 29897447 DOI: 10.1093/icb/icy055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In striated muscle, the giant protein titin spans the entire length of a half-sarcomere and extends from the backbone of the thick filament, reversibly attaches to the thin filaments, and anchors to the dense protein network of the z-disk capping the end of the half-sarcomere. However, little is known about the relationship between the basic mechanical properties of titin and muscle contractility. Here, we build upon our previous multi-filament, spatially explicit computational model of the half-sarcomere by incorporating the nonlinear mechanics of titin filaments in the I-band. We vary parameters of the nonlinearity to understand the effects of titin stiffness on contraction dynamics and efficiency. We do so by simulating isometric contraction for a range of sarcomere lengths (SLs; 1.6-3.25 µm). Intermediate values of titin stiffness accurately reproduce the passive force-SL relation for skeletal muscle. The maximum force-SL relation is not affected by titin for SL≤2.5 µm. However, as titin stiffness increases, maximum force for the four thick filament system at SL = 3.0 µm significantly decreases from 103.2 ± 2 to 58.8 ± 1 pN. Additionally, by monitoring ATP consumption, we measure contraction efficiency as a function of titin stiffness. We find that at SL = 3.0 µm, efficiency significantly decreases from 13.9 ± 0.4 to 7.0 ± 0.3 pN/ATP when increasing titin stiffness, with little or no effect below 2.5 µm. Taken together, our results suggest that, despite an increase in the fraction of motors bound to actin along the descending limb when titin is stiffer, the force-generating capacity of the motors is reduced. These results suggest that titin stiffness has the potential to affect contractile efficiency.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98105, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98105, USA
| | - Thomas L Daniel
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98105, USA.,Department of Biology, 24 Kincaid Hall, Seattle, WA 98105, USA
| |
Collapse
|
13
|
Freundt JK, Linke WA. Titin as a force-generating muscle protein under regulatory control. J Appl Physiol (1985) 2018; 126:1474-1482. [PMID: 30521425 DOI: 10.1152/japplphysiol.00865.2018] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Titin has long been recognized as a mechanical protein in muscle cells that has a main function as a molecular spring in the contractile units, the sarcomeres. Recent work suggests that the titin spring contributes to muscle contraction in a more active manner than previously thought. In this review, we highlight this property, specifically the ability of the immunoglobulin-like (Ig) domains of titin to undergo unfolding-refolding transitions when isolated titin molecules or skeletal myofibrils are held at physiological force levels. Folding of titin Ig domains under force is a hitherto unappreciated, putative source of work production in muscle cells, which could work in synergy with the actomyosin system to maximize the energy delivered by a stretched, actively contracting muscle. This review also focuses on the mechanisms shown to modulate titin-based viscoelastic forces in skeletal muscle cells, including chaperone binding, titin oxidation, phosphorylation, Ca2+ binding, and interaction with actin filaments. Along the way, we discuss which of these modulatory mechanisms might contribute to the phenomenon of residual force enhancement relevant for eccentric muscle contractions. Finally, a brief perspective is added on the potential for the alterations in titin-based force to dynamically alter mechano-chemical signaling pathways in the muscle cell. We conclude that titin from skeletal muscle is a determinant of both passive and active tension and a bona fide mechanosensor, whose stiffness is tuned by various independent mechanisms.
Collapse
Affiliation(s)
- Johanna K Freundt
- Institute of Physiology II, University of Muenster , Muenster , Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster , Muenster , Germany
| |
Collapse
|
14
|
Nishikawa KC, Lindstedt SL, LaStayo PC. Basic science and clinical use of eccentric contractions: History and uncertainties. JOURNAL OF SPORT AND HEALTH SCIENCE 2018; 7:265-274. [PMID: 30356648 PMCID: PMC6189250 DOI: 10.1016/j.jshs.2018.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 05/18/2023]
Abstract
The peculiar attributes of muscles that are stretched when active have been noted for nearly a century. Understandably, the focus of muscle physiology has been primarily on shortening and isometric contractions, as eloquently revealed by A.V. Hill and subsequently by his students. When the sliding filament theory was introduced by A.F. Huxley and H.E. Huxley, it was a relatively simple task to link Hill's mechanical observations to the actions of the cross bridges during these shortening and isometric contractions. In contrast, lengthening or eccentric contractions have remained somewhat enigmatic. Dismissed as necessarily causing muscle damage, eccentric contractions have been much more difficult to fit into the cross-bridge theory. The relatively recent discovery of the giant elastic sarcomeric filament titin has thrust a previously missing element into any discussion of muscle function, in particular during active stretch. Indeed, the unexpected contribution of giant elastic proteins to muscle contractile function is highlighted by recent discoveries that twitchin-actin interactions are responsible for the "catch" property of invertebrate muscle. In this review, we examine several current theories that have been proposed to account for the properties of muscle during eccentric contraction. We ask how well each of these explains existing data and how an elastic filament can be incorporated into the sliding filament model. Finally, we review the increasing body of evidence for the benefits of including eccentric contractions into a program of muscle rehabilitation and strengthening.
Collapse
Affiliation(s)
- Kiisa C. Nishikawa
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Stan L. Lindstedt
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Corresponding author
| | - Paul C. LaStayo
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 86011, USA
| |
Collapse
|
15
|
Joumaa V, Bertrand F, Liu S, Poscente S, Herzog W. Does partial titin degradation affect sarcomere length nonuniformities and force in active and passive myofibrils? Am J Physiol Cell Physiol 2018; 315:C310-C318. [PMID: 29768046 DOI: 10.1152/ajpcell.00183.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of this study was to determine the role of titin in preventing the development of sarcomere length nonuniformities following activation and after active and passive stretch by determining the effect of partial titin degradation on sarcomere length nonuniformities and force in passive and active myofibrils. Selective partial titin degradation was performed using a low dose of trypsin. Myofibrils were set at a sarcomere length of 2.4 µm and then passively stretched to sarcomere lengths of 3.4 and 4.4 µm. In the active condition, myofibrils were set at a sarcomere length of 2.8 µm, activated, and actively stretched by 1 µm/sarcomere. The extent of sarcomere length nonuniformities was calculated for each sarcomere as the absolute difference between sarcomere length and the mean sarcomere length of the myofibril. Our main finding is that partial titin degradation does not increase sarcomere length nonuniformities after passive stretch and activation compared with when titin is intact but increases the extent of sarcomere length nonuniformities after active stretch. Furthermore, when titin was partially degraded, active and passive stresses were substantially reduced. These results suggest that titin plays a crucial role in actively stretched myofibrils and is likely involved in active and passive force production.
Collapse
Affiliation(s)
- V Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB, Canada
| | - F Bertrand
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB, Canada
| | - S Liu
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB, Canada
| | - S Poscente
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB, Canada
| | - W Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB, Canada
| |
Collapse
|
16
|
Affiliation(s)
- Wolfgang A. Linke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
- Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Göttingen, 37073 Göttingen, Germany
- Cardiac Mechanotransduction Group, Clinic for Cardiology and Pneumology, University Medical Center, 37073 Göttingen, Germany
| |
Collapse
|
17
|
Nocella M, Cecchi G, Colombini B. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature. J Physiol 2017; 595:4317-4328. [PMID: 28332714 DOI: 10.1113/jp273672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Actomyosin ATP hydrolysis occurring during muscle contraction releases inorganic phosphate [Pi ] in the myoplasm. High [Pi ] reduces force and affects force kinetics in skinned muscle fibres at low temperature. These effects decrease at high temperature, raising the question of their importance under physiological conditions. This study provides the first analysis of the effects of Pi on muscle performance in intact mammalian fibres at physiological temperature. Myoplasmic [Pi ] was raised by fatiguing the fibres with a series of tetanic contractions. [Pi ] increase reduces muscular force mainly by decreasing the force of the single molecular motor, the crossbridge, and alters the crossbridge response to fast length perturbation indicating faster kinetics. These results are in agreement with schemes of actomyosin ATPase and the crossbridge cycle including a low- or no-force state and show that fibre length changes perturb the Pi -sensitive force generation of the crossbridge cycle. ABSTRACT Actomyosin ATP hydrolysis during muscle contraction releases inorganic phosphate, increasing [Pi ] in the myoplasm. Experiments in skinned fibres at low temperature (10-12°C) have shown that [Pi ] increase depresses isometric force and alters the kinetics of actomyosin interaction. However, the effects of Pi decrease with temperature and this raises the question of the role of Pi under physiological conditions. The present experiments were performed to investigate this point. Intact fibre bundles isolated from the flexor digitorum brevis of C57BL/6 mice were stimulated with a series of tetanic contractions at 1.5 s intervals at 33°C. As show previously the most significant change induced by a bout of contractile activity similar to the initial 10 tetani of the series was an increase of [Pi ] without significant Ca2+ or pH changes. Measurements of force, stiffness and responses to fast stretches and releases were therefore made on the 10th tetanus of the series and compared with control. We found that (i) tetanic force at the 10th tetanus was ∼20% smaller than control without a significant decrease of crossbridge stiffness; and (ii) the force recovery following quick stretches and releases was faster than in control. These results indicate that at physiological temperature the increase of [Pi ] occurring during early fatigue reduces tetanic force mainly by depressing the individual crossbridge force and accelerating crossbridge kinetics.
Collapse
Affiliation(s)
- M Nocella
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. B. Morgagni, 63, 50134, Florence, Italy
| | - G Cecchi
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. B. Morgagni, 63, 50134, Florence, Italy
| | - B Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. B. Morgagni, 63, 50134, Florence, Italy
| |
Collapse
|
18
|
Herzog W, Schappacher G, DuVall M, Leonard TR, Herzog JA. Residual Force Enhancement Following Eccentric Contractions: A New Mechanism Involving Titin. Physiology (Bethesda) 2017; 31:300-12. [PMID: 27252165 DOI: 10.1152/physiol.00049.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Eccentric muscle properties are not well characterized by the current paradigm of the molecular mechanism of contraction: the cross-bridge theory. Findings of force contributions by passive structural elements a decade ago paved the way for a new theory. Here, we present experimental evidence and theoretical support for the idea that the structural protein titin contributes to active force production, thereby explaining many of the unresolved properties of eccentric muscle contraction.
Collapse
Affiliation(s)
- W Herzog
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - G Schappacher
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - M DuVall
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - T R Leonard
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| | - J A Herzog
- University of Calgary Human Performance Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Ferreira JP, Sartor CD, Leal ÂMO, Sacco ICN, Sato TO, Ribeiro IL, Soares AS, Cunha JE, Salvini TF. The effect of peripheral neuropathy on lower limb muscle strength in diabetic individuals. Clin Biomech (Bristol, Avon) 2017; 43:67-73. [PMID: 28213167 DOI: 10.1016/j.clinbiomech.2017.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Skeletal muscle strength is poorly described and understood in diabetic participants with diabetic peripheral neuropathy. This study aimed to investigate the extensor and flexor torque of the knee and ankle during concentric, eccentric, and isometric contractions in men with diabetes mellitus type 2 with and without diabetic peripheral neuropathy. METHODS Three groups of adult men (n=92), similar in age, body mass index, and testosterone levels, were analyzed: 33 non-diabetic controls, 31 with type 2 diabetes mellitus, and 28 with diabetic peripheral neuropathy. The peak torques in the concentric, eccentric, and isometric contractions were evaluated using an isokinetic dynamometer during knee and ankle flexion and extension. FINDINGS Individuals with diabetes and diabetic peripheral neuropathy presented similar low concentric and isometric knee and ankle torques that were also lower than the controls. However, the eccentric torque was similar among the groups, the contractions, and the joints. INTERPRETATION Regardless of the presence of peripheral neuropathy, differences in skeletal muscle function were found. The muscle involvement does not follow the same pattern of sensorial losses, since there are no distal-to-proximal impairments. Both knee and ankle were affected, but the effect sizes of the concentric and isometric torques were found to be greater in the participants' knees than in their ankles. The eccentric function did not reveal differences between the healthy control group and the two diabetic groups, raising questions about the involvement of the passive muscle components.
Collapse
Affiliation(s)
- Jean P Ferreira
- Laboratory of Skeletal Muscle Plasticity, Department of Physical Therapy, Federal University of São Carlos, SP, Brazil
| | - Cristina D Sartor
- Physical Therapy, Speech and Occupational Therapy Department, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ângela M O Leal
- Department of Medicine, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Isabel C N Sacco
- Physical Therapy, Speech and Occupational Therapy Department, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana O Sato
- Laboratory of Skeletal Muscle Plasticity, Department of Physical Therapy, Federal University of São Carlos, SP, Brazil
| | - Ivana L Ribeiro
- Laboratory of Skeletal Muscle Plasticity, Department of Physical Therapy, Federal University of São Carlos, SP, Brazil
| | - Alice S Soares
- Laboratory of Skeletal Muscle Plasticity, Department of Physical Therapy, Federal University of São Carlos, SP, Brazil
| | - Jonathan E Cunha
- Laboratory of Skeletal Muscle Plasticity, Department of Physical Therapy, Federal University of São Carlos, SP, Brazil
| | - Tania F Salvini
- Laboratory of Skeletal Muscle Plasticity, Department of Physical Therapy, Federal University of São Carlos, SP, Brazil.
| |
Collapse
|
20
|
Lindstedt S, Nishikawa K. Huxleys’ Missing Filament: Form and Function of Titin in Vertebrate Striated Muscle. Annu Rev Physiol 2017; 79:145-166. [DOI: 10.1146/annurev-physiol-022516-034152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stan Lindstedt
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona 86011-4185
| | - Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011-4185;
| |
Collapse
|
21
|
Hessel AL, Lindstedt SL, Nishikawa KC. Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein. Front Physiol 2017; 8:70. [PMID: 28232805 PMCID: PMC5299520 DOI: 10.3389/fphys.2017.00070] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
When active muscles are stretched, our understanding of muscle function is stretched as well. Our understanding of the molecular mechanisms of concentric contraction has advanced considerably since the advent of the sliding filament theory, whereas mechanisms for increased force production during eccentric contraction are only now becoming clearer. Eccentric contractions play an important role in everyday human movements, including mobility, stability, and muscle strength. Shortly after the sliding filament theory of muscle contraction was introduced, there was a reluctant recognition that muscle behaved as if it contained an "elastic" filament. Jean Hanson and Hugh Huxley referred to this structure as the "S-filament," though their concept gained little traction. This additional filament, the giant titin protein, was identified several decades later, and its roles in muscle contraction are still being discovered. Recent research has demonstrated that, like activation of thin filaments by calcium, titin is also activated in muscle sarcomeres by mechanisms only now being elucidated. The mdm mutation in mice appears to prevent activation of titin, and is a promising model system for investigating mechanisms of titin activation. Titin stiffness appears to increase with muscle force production, providing a mechanism that explains two fundamental properties of eccentric contractions: their high force and low energetic cost. The high force and low energy cost of eccentric contractions makes them particularly well suited for athletic training and rehabilitation. Eccentric exercise is commonly prescribed for treatment of a variety of conditions including sarcopenia, osteoporosis, and tendinosis. Use of eccentric exercise in rehabilitation and athletic training has exploded to include treatment for the elderly, as well as muscle and bone density maintenance for astronauts during long-term space travel. For exercise intolerance and many types of sports injuries, experimental evidence suggests that interventions involving eccentric exercise are demonstrably superior to conventional concentric interventions. Future work promises to advance our understanding of the molecular mechanisms that confer high force and low energy cost to eccentric contraction, as well as signaling mechanisms responsible for the beneficial effects of eccentric exercise in athletic training and rehabilitation.
Collapse
Affiliation(s)
| | | | - Kiisa C. Nishikawa
- Department of Biological Sciences, Center for Bioengineering Innovation, Northern Arizona UniversityFlagstaff, AZ, USA
| |
Collapse
|
22
|
Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. Nat Commun 2016; 7:13281. [PMID: 27796302 PMCID: PMC5095582 DOI: 10.1038/ncomms13281] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway. Recent data suggest that muscle contraction is regulated by thick filament mechano-sensing in addition to the well-known thin filament-mediated calcium signalling pathway. Here the authors provide direct evidence that myosin activation in skeletal muscle is controlled by thick filament stress independently of calcium.
Collapse
|
23
|
Nishikawa K. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. ACTA ACUST UNITED AC 2016; 219:189-96. [PMID: 26792330 DOI: 10.1242/jeb.124057] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the past century, physiologists have made steady progress in elucidating the molecular mechanisms of muscle contraction. However, this progress has so far failed to definitively explain the high force and low energy cost of eccentric muscle contraction. Hypotheses that have been proposed to explain increased muscle force during active stretch include cross-bridge mechanisms, sarcomere and half-sarcomere length non-uniformity, and engagement of a structural element upon muscle activation. The available evidence suggests that force enhancement results from an interaction between an elastic element in muscle sarcomeres, which is engaged upon activation, and the cross-bridges, which interact with the elastic elements to regulate their length and stiffness. Similarities between titin-based residual force enhancement in vertebrate muscle and twitchin-based 'catch' in invertebrate muscle suggest evolutionary homology. The winding filament hypothesis suggests plausible molecular mechanisms for effects of both Ca(2+) influx and cross-bridge cycling on titin in active muscle. This hypothesis proposes that the N2A region of titin binds to actin upon Ca(2+) influx, and that the PEVK region of titin winds on the thin filaments during force development because the cross-bridges not only translate but also rotate the thin filaments. Simulations demonstrate that a muscle model based on the winding filament hypothesis can predict residual force enhancement on the descending limb of the length-tension curve in muscles during eccentric contraction. A kinematic model of titin winding based on sarcomere geometry makes testable predictions about titin isoforms in different muscles. Ongoing research is aimed at testing these predictions and elucidating the biochemistry of the underlying protein interactions.
Collapse
Affiliation(s)
- Kiisa Nishikawa
- Northern Arizona University, Department of Biological Sciences and Center for Bioengineering Innovation, Flagstaff, AZ 86011-4165, USA
| |
Collapse
|
24
|
Colombini B, Nocella M, Bagni MA. Non-crossbridge stiffness in active muscle fibres. ACTA ACUST UNITED AC 2016; 219:153-60. [PMID: 26792325 DOI: 10.1242/jeb.124370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stretching of an activated skeletal muscle induces a transient tension increase followed by a period during which the tension remains elevated well above the isometric level at an almost constant value. This excess of tension in response to stretching has been called 'static tension' and attributed to an increase in fibre stiffness above the resting value, named 'static stiffness'. This observation was originally made, by our group, in frog intact muscle fibres and has been confirmed more recently, by us, in mammalian intact fibres. Following stimulation, fibre stiffness starts to increase during the latent period well before crossbridge force generation and it is present throughout the whole contraction in both single twitches and tetani. Static stiffness is dependent on sarcomere length in a different way from crossbridge force and is independent of stretching amplitude and velocity. Static stiffness follows a time course which is distinct from that of active force and very similar to the myoplasmic calcium concentration time course. We therefore hypothesize that static stiffness is due to a calcium-dependent stiffening of a non-crossbridge sarcomere structure, such as the titin filament. According to this hypothesis, titin, in addition to its well-recognized role in determining the muscle passive tension, could have a role during muscle activity.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | - Marta Nocella
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| |
Collapse
|
25
|
Monroy JA, Powers KL, Pace CM, Uyeno T, Nishikawa KC. Effects of activation on the elastic properties of intact soleus muscles with a deletion in titin. J Exp Biol 2016; 220:828-836. [DOI: 10.1242/jeb.139717] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023]
Abstract
Titin has long been known to contribute to muscle passive tension. Recently, it was also demonstrated that titin-based stiffness increases upon Ca2+-activation of wildtype mouse psoas myofibrils stretched beyond overlap of the thick and thin filaments. In addition, this increase in titin-based stiffness upon activation was impaired in single psoas myofibrils from mdm mice with a deletion in titin. Here, we investigate the effects of muscle activation on elastic properties of intact soleus muscles from wildtype and mdm mice to determine whether titin may contribute to active muscle stiffness. Using load-clamp experiments, we compared the stress-strain relationships of elastic elements in active and passive muscles during unloading, and quantified the change in stiffness upon activation. We used the mdm mutation, characterized by a deletion in the N2A region of the Ttn gene, to test the hypothesis that titin contributes to active muscle stiffness. Results show that the elastic modulus of wildtype muscles increases upon activation. Elastic elements began to develop force at lengths that were 15% shorter in active than in passive soleus, and there was a 2.9-fold increase in the slope of the stress - strain relationship. In contrast, mdm soleus showed no effect of activation on the slope or intercept of the stress - strain relationship. These results from intact soleus muscles are qualitatively and quantitatively similar to results from single wildtype psoas myofibrils stretched beyond overlap of the thick and thin filaments. Therefore, it is likely that titin plays a role in the increase of stiffness during rapid unloading that we observed in intact soleus muscles upon activation. The results from intact mdm soleus muscles are also consistent with impaired titin activation observed in single mdm psoas myofibrils stretched beyond filament overlap, further suggesting that the mechanism of titin activation is impaired in skeletal muscles from mdm mice. These results are consistent with the idea that, in addition to the thin filaments, titin is activated upon Ca2+-influx in skeletal muscle.
Collapse
Affiliation(s)
- Jenna A. Monroy
- W. M. Keck Science Department, The Claremont Colleges, 925 N Mills Ave, Claremont, CA 91711, USA
| | - Krysta L. Powers
- Human Performance Laboratory, Department of Kinesiology, University of Calgary, Canada
| | | | | | - Kiisa C. Nishikawa
- Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, USA
| |
Collapse
|
26
|
Editorial on EMC 2014 special issue. J Muscle Res Cell Motil 2015; 36:1-3. [PMID: 25452123 DOI: 10.1007/s10974-014-9401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Cornachione AS, Leite F, Bagni MA, Rassier DE. The increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoforms. Am J Physiol Cell Physiol 2015; 310:C19-26. [PMID: 26405100 DOI: 10.1152/ajpcell.00156.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/18/2015] [Indexed: 02/01/2023]
Abstract
Skeletal muscles present a non-cross-bridge increase in sarcomere stiffness and tension on Ca(2+) activation, referred to as static stiffness and static tension, respectively. It has been hypothesized that this increase in tension is caused by Ca(2+)-dependent changes in the properties of titin molecules. To verify this hypothesis, we investigated the static tension in muscles containing different titin isoforms. Permeabilized myofibrils were isolated from the psoas, soleus, and heart ventricle from the rabbit, and tested in pCa 9.0 and pCa 4.5, before and after extraction of troponin C, thin filaments, and treatment with the actomyosin inhibitor blebbistatin. The myofibrils were tested with stretches of different amplitudes in sarcomere lengths varying between 1.93 and 3.37 μm for the psoas, 2.68 and 4.21 μm for the soleus, and 1.51 and 2.86 μm for the ventricle. Using gel electrophoresis, we confirmed that the three muscles tested have different titin isoforms. The static tension was present in psoas and soleus myofibrils, but not in ventricle myofibrils, and higher in psoas myofibrils than in soleus myofibrils. These results suggest that the increase in the static tension is directly associated with Ca(2+)-dependent change in titin properties and not associated with changes in titin-actin interactions.
Collapse
Affiliation(s)
| | - Felipe Leite
- Department of Kinesiology and Physical Education, McGill McGill University, Montreal, Quebec, Canada; and
| | - Maria Angela Bagni
- Dipartimento di Medicina Sperimentale e Clinica, Scienze Fisiologiche, University of Florence, Florence, Italy
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill McGill University, Montreal, Quebec, Canada; and
| |
Collapse
|
28
|
Hughes DC, Wallace MA, Baar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E1-E10. [PMID: 25968577 PMCID: PMC4490334 DOI: 10.1152/ajpendo.00095.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/08/2015] [Indexed: 11/22/2022]
Abstract
The loss of muscle strength and increased injury rate in aging skeletal muscle has previously been attributed to loss of muscle protein (cross-sectional area) and/or decreased neural activation. However, it is becoming clear that force transfer within and between fibers plays a significant role in this process as well. Force transfer involves a secondary matrix of proteins that align and transmit the force produced by the thick and thin filaments along muscle fibers and out to the extracellular matrix. These specialized networks of cytoskeletal proteins aid in passing force through the muscle and also serve to protect individual fibers from injury. This review discusses the cytoskeleton proteins that have been identified as playing a role in muscle force transmission, both longitudinally and laterally, and where possible highlights how disease, aging, and exercise influence the expression and function of these proteins.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Marita A Wallace
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| |
Collapse
|
29
|
Thixotropy and rheopexy of muscle fibers probed using sinusoidal oscillations. PLoS One 2015; 10:e0121726. [PMID: 25880774 PMCID: PMC4400131 DOI: 10.1371/journal.pone.0121726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/15/2015] [Indexed: 12/02/2022] Open
Abstract
Length changes of muscle fibers have previously been shown to result in a temporary reduction in fiber stiffness that is referred to as thixotropy. Understanding the mechanism of this thixotropy is important to our understanding of muscle function since there are many instances in which muscle is subjected to repeated patterns of lengthening and shortening. By applying sinusoidal length changes to one end of single permeabilized muscle fibers and measuring the force response at the opposite end, we studied the history-dependent stiffness of both relaxed and activated muscle fibers. For length change oscillations greater than 1 Hz, we observed thixotropic behavior of activated fibers. Treatment of these fibers with EDTA and blebbistatin, which inhibits myosin-actin interactions, quashed this effect, suggesting that the mechanism of muscle fiber thixotropy is cross-bridge dependent. We modeled a half-sarcomere experiencing sinusoidal length changes, and our simulations suggest that thixotropy could arise from force-dependent cross-bridge kinetics. Surprisingly, we also observed that, for length change oscillations less than 1 Hz, the muscle fiber exhibited rheopexy. In other words, the stiffness of the fiber increased in response to the length changes. Blebbistatin and EDTA did not disrupt the rheopectic behavior, suggesting that a non-cross-bridge mechanism contributes to this phenomenon.
Collapse
|