1
|
Wang J, Zhao J, Yang M, Xu H, Gao Z, Guo J, Song YY. Target-modulated mineralization of wood channels as enzyme-free electrochemical sensors for detecting amyloid-β species. Anal Chim Acta 2023; 1279:341759. [PMID: 37827662 DOI: 10.1016/j.aca.2023.341759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder, which has been found to be associated with neurotoxic amyloid-β oligomers (AβO). The early diagnosis of AD is still a great challenge. Herein, inspired by the hierarchical channel structure of natural wood, we design and demonstrate a low-cost and sensitive wood channel-based fluidic membrane for electrochemical sensing of AβO1-42. In this design, Zn/Cu-2-methylimidazole (Zn/Cu-Hmim) with artificial peroxidase (POD)-like activity was asymmetrically fabricated at one side of the wood channels by biomimetic mineralization and a subsequent ion exchange reaction. The strong affinity between Cu(II) and AβO1-42 enables Cu(II) species in Zn/Cu-Hmim to be extracted by AβO1-42, thus suppressing the POD-like performance via Zn/Cu-Hmim disassembly. Using Zn/Cu-Hmim to catalyze the oxidation reaction of 2,2'-diazo-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) by H2O2, the current-voltage (I-V) properties of wood channels are influenced by the generated oxidation product (ABTS•+), thus providing information useful for the quantitative analysis of AβO1-42. Importantly, the three aggregation states of Aβ1-42 (AβM1-42, AβO1-42, and AβF1-42) can also be identified, owing to the affinity difference and available reaction sites. The proposed wood membrane provides a novel, assessable, and scalable channel device to develop sensitive electrochemical sensors; moreover, the sustainable wood materials represent alternative candidates for developing channel-structured sensing platforms.
Collapse
Affiliation(s)
- Jinfeng Wang
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Mei Yang
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Huijie Xu
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Junli Guo
- College of Science, Northeastern University, Shenyang, 110819, China.
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
2
|
Gandbhir O, Sundaram P. Effect of AmyTrap, an amyloid-β binding drug, on Aβ induced mitochondrial dysfunction and tau phosphorylation in cultured neuroblastoma cells. Metab Brain Dis 2020; 35:923-931. [PMID: 32367269 PMCID: PMC7358124 DOI: 10.1007/s11011-019-00520-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 10/24/2022]
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia, affecting 25 million people worldwide. Accumulation of Amyloid-β (Aβ) in the mitochondria has been shown to adversely affect key enzymes including pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), oxoglutarate dehydrogenase (OGDH). Accumulation of Aβ is also believed to increase Tau expression and pathology. Tau, in its toxic state, results in synaptic damage causing memory and cognitive dysfunction. We are developing a drug to treat AD namely AmyTrap. The active pharmacological ingredient is a retro inverso, Aβ-binding peptide which sequesters Aβ. We wanted to examine the effect of AmyTrap peptide on Aβ-induced mitochondrial dysfunction and Tau phosphorylation. Therefore, we treated SH-SY5Y neuroblastoma cells with wild-type Aβ, a mutant AβY10A, AmyTrap peptide (RI-peptide), or Aβ and RI-peptide for 72 h. The mutant AβY10A is known to impact the self-aggregating property of Aβ as this Tyr10 is essential for self-aggregation. As expected, AβY10A reversed PDH, OGDH and SDH dysfunction to near normal levels. Further, AβY10A successfully reversed Tau phosphorylation, suggesting that Tyr10 is also associated with Aβ-induced cytotoxicity. RI-peptide was able to significantly reverse SDH dysfunction with limited effect on PDH and Tau phosphorylation. The findings are suggestive that the Tyr10 on Aβ plays a critical role in the self-aggregation. Further studies are warranted to expand these findings.
Collapse
Affiliation(s)
- Omkar Gandbhir
- Recombinant Technologies LLC, 1090 Meriden Waterbury Turnpike, Suite 1, Cheshire, CT, 06410, USA
| | - Pazhani Sundaram
- Recombinant Technologies LLC, 1090 Meriden Waterbury Turnpike, Suite 1, Cheshire, CT, 06410, USA.
| |
Collapse
|
3
|
Heo Y, Kim K, Kim J, Jang J, Park CB. Near-Infrared-Active Copper Bismuth Oxide Electrodes for Targeted Dissociation of Alzheimer's β-Amyloid Aggregates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23667-23676. [PMID: 32364368 DOI: 10.1021/acsami.0c02349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal accumulation of β-amyloid (Aβ) aggregates in the brain is a major pathological hallmark of Alzheimer's disease. We report a near-infrared (NIR)-active CuBi2O4-based photocathodic platform that can target intact Aβ aggregates and dissociate them into nontoxic species. Because of its relatively narrow band gap, CuBi2O4 exhibits strong absorption of NIR light, which allows for deeper tissue penetration and causes less photodamage to tissues compared to visible light. Furthermore, its high stability in aqueous media, biocompatibility, and robustness against photocorrosion make CuBi2O4 an ideal material for medical applications. For the targeted clearance of Aβ aggregates, we have conjugated the KLVFF peptide which specifically recognizes and captures Aβ aggregates on the surface of silver-doped CuBi2O4 (Ag:CuBi2O4). Upon illumination of NIR light under a cathodic bias, the KLVFF-immobilized Ag:CuBi2O4 (KLVFF-Ag:CuBi2O4) effectively dissociated β-sheet-rich, long, and entangled Aβ fibrillary aggregates into small fragmented, soluble species through photo-oxygenation. We also verified that the KLVFF-Ag:CuBi2O4 photocathode is biocompatible and effective in reducing Aβ aggregate-induced neurotoxicity. Our work demonstrates the potential of the KLVFF-Ag:CuBi2O4 platform for the targeted disassembly of cytotoxic, robust Aβ aggregates with the aid of NIR energy and cathodic bias.
Collapse
Affiliation(s)
- Yerin Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Kayoung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
4
|
Gandbhir O, Sundaram P. Pre-Clinical Safety and Efficacy Evaluation of Amytrap, a Novel Therapeutic to Treat Alzheimer's Disease. J Alzheimers Dis Rep 2019; 3:77-94. [PMID: 31259305 PMCID: PMC6597960 DOI: 10.3233/adr-190107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia. Amyloid-β (Aβ42) is implicated in AD pathogenesis. We have designed a non-immune based proprietary therapeutic, called Amytrap, a conjugate containing a retro-inverso peptide, polyethylene glycol, and human serum albumin. Amytrap not only binds Aβ42 but also prevents and dissociates aggregated Aβ42. Amytrap binds to the region in Aβ42 known to trigger its self-aggregation, thus disrupting aggregation. We have obtained proof of concept on AmyTrap in a clinically relevant mouse model, namely, AD-APPSWE/Tg2576. We synthesized and characterized Amytrap and confirmed its authenticity. Efficacy evaluations were performed on young (5 months) and old (9 months) model mice. Amytrap was injected biweekly for a period of five months. Pharmacokinetics and safety toxicology were assessed in normal mice and rats, respectively. Post treatment, younger mice showed significant improvements in cognition and Aβ42 levels in plasma, brain, and cerebrospinal fluid, while older mice showed less significant benefits. Immunohistochemistry of brain sections showed similar differences between young and old mice. They all had diminished size and number of plaques in the brain of Amytrap-treated mice. Further, treated mice did not develop antibodies to Amytrap, suggesting Amytrap is non-immunogenic. Safety toxicological studies in rats showed that Amytrap was well tolerated and therefore safe (even at 50 X the efficacy dose). Stability tests showed Amytrap is stable at 4°C for up to one year. Efficacy and safety features make Amytrap a promising candidate for treating or modulating AD.
Collapse
|
5
|
Yu Y, Yin T, Peng Q, Kong L, Li C, Tang D, Yin X. Simultaneous Monitoring of Amyloid-β (Aβ) Oligomers and Fibrils for Effectively Evaluating the Dynamic Process of Aβ Aggregation. ACS Sens 2019; 4:471-478. [PMID: 30693761 DOI: 10.1021/acssensors.8b01493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, we provide a proof of concept for a novel strategy that targets the assessment of the aggregation of amyloid-β (Aβ) by simultaneously determining its oligomers (Aβo) and fibrils (Aβf) in one analytical system. By fabricating and combining two immunosensors for Aβo and Aβf, respectively, we constructed a two-channel electrochemical system. The ratio of Aβf to Aβo was calculated and taken as a possible criterion for evaluating the extent of aggregation. Thereby, the presence of and transformation between oligomers and fibrils were accurately probed by incubating the Aβ monomer for different times and then calculating the ratios of Aβf to Aβo. The applicability of this method was further validated by tracking the dynamic progress of Aβ aggregation in the cerebrospinal fluid and tissues of Alzheimer's disease (AD) rats, which revealed that the ratio of Aβf to Aβo in rat brain gradually increased with the progression of AD, which was indicative of the severity of peptide aggregation during this process. Overall, this study represents the first example of a quantitative strategy for precisely evaluating the aggregation process that is related to pathological events in AD brain.
Collapse
Affiliation(s)
- Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Tianxiao Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Qiwen Peng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Lingna Kong
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| |
Collapse
|
6
|
Gandbhir O, Sundaram P. 'Amytrapper', a Novel Immobilized Sepharose API Matrix, Removes Amyloid-β from Circulation in vitro. J Alzheimers Dis Rep 2019; 3:19-29. [PMID: 30842995 PMCID: PMC6400113 DOI: 10.3233/adr-180093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among elderly patients afflicted by neurodegenerative diseases, caused by the accumulation of amyloid-β (Aβ). Therapeutic interventions in targeting and restricting Aβ production resulted in little or no success. However, recent studies have shown signs of success in validating Aβ as a target. Recombinant Technologies LLC (RTL) has developed and studied its proprietary Amytrap peptide to remove Aβ from circulation which in turn depletes brain Aβ in a clinically relevant mouse model of AD. In the current study, this Amytrap peptide (the active pharmacological ingredient, API) has been linked to sepharose matrix by click chemistry. The derivative namely 'Amytrapper' was confirmed to remove Aβ from the surrounding media spiked with Aβ42. Additional testing performed on Amytrapper with sera and plasma containing Aβ42 showed retention of Aβ42 upon increasing concentrations of biotinylated Aβ42 (bio-Aβ42). Specificity of this binding was confirmed via 1) pre-blocking Amytrapper with cold (unbiotinylated) Aβ42 followed by binding experiment with biotinylated Aβ42, 2) 2-dimensional SDS-PAGE analyses on samples harvested before and after the binding experiment, and 3) reconciling the amounts bound to beads and left over in the flow through. The results provide a proof of concept for our proposed prototype design for an Amytrapper device. The results suggest that extracorporeal clearance of Aβ42 by Amytrapper could be a way to manage accumulation of amyloid in AD and thus could become an added mode of therapy for disease modification.
Collapse
|
7
|
Yau WM, Tycko R. Depletion of amyloid-β peptides from solution by sequestration within fibril-seeded hydrogels. Protein Sci 2018; 27:1218-1230. [PMID: 29417648 DOI: 10.1002/pro.3387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/10/2022]
Abstract
Aggregation of amyloid-β (Aβ) peptides in brain tissue leads to neurodegeneration in Alzheimer's disease (AD). Regardless of the kinetics or detailed mechanisms of Aβ aggregation, aggregation can only occur if Aβ concentrations exceed their local equilibrium solubility values. We propose that excess Aβ peptides can be removed from supersaturated solutions, including solutions in biological fluids, by the addition of hydrogels that are seeded with Aβ fibril fragments. Fibril growth within the hydrogels then sequesters excess peptides until equilibrium concentrations are reached. Experiments with 40- and 42-residue Aβ peptides (Aβ40 and Aβ42) in phosphate buffer at 24°C and in filtered fetal bovine serum at 37°C, using crosslinked polyacrylamide hydrogels, demonstrate the validity of this concept. Aβ sequestration in fibril-seeded hydrogels (or other porous media) may prove to be a useful technique in experiments with animal models of AD and may represent a possible approach to preventing or slowing the progression of AD in humans.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520
| |
Collapse
|
8
|
Li N, Jang H, Yuan M, Li W, Yun X, Lee J, Du Q, Nussinov R, Hou J, Lal R, Zhang F. Graphite-Templated Amyloid Nanostructures Formed by a Potential Pentapeptide Inhibitor for Alzheimer's Disease: A Combined Study of Real-Time Atomic Force Microscopy and Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6647-6656. [PMID: 28605901 PMCID: PMC7900909 DOI: 10.1021/acs.langmuir.7b00414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly of peptides is closely related to many diseases, including Alzheimer's, Parkinson's, and prion diseases. Understanding the basic mechanism of this assembly is essential for designing ultimate cure and preventive measures. Template-assisted self-assembly (TASA) of peptides on inorganic substrates can provide fundamental understanding of substrate-dependent peptides assemble, including the role of hydrophobic interface on the peptide fibrillization. Here, we have studied the self-assembly process of a potential pentapeptide inhibitor on the surface of highly oriented pyrolytic graphite (HOPG) using real time atomic force microscopy (RT-AFM) as well as molecular dynamics (MD) simulation. Experimental and simulation results show nanofilament formation consisting of β-sheet structures and epitaxial growth on HOPG. Height analysis of the nanofilaments and MD simulation indicate that the peptides adopt a lying down configuration of double-layered antiparallel β-sheets for its epitaxial growth, and the number of nanofilament layers is concentration-dependent. These findings provide new perspective for the mechanism of peptide-based fibrillization in amyloid diseases as well as for designing well-ordered micrometrical and nanometrical structures.
Collapse
Affiliation(s)
- Na Li
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ming Yuan
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Wanrong Li
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Xiaolin Yun
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Joon Lee
- Materials Science and Engineering Program and Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 United States
| | - Qiqige Du
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jiahua Hou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ratnesh Lal
- Materials Science and Engineering Program and Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 United States
| | - Feng Zhang
- Agricultural Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 United States
| |
Collapse
|
9
|
Barr RK, Verdile G, Wijaya LK, Morici M, Taddei K, Gupta VB, Pedrini S, Jin L, Nicolazzo JA, Knock E, Fraser PE, Martins RN. Validation and Characterization of a Novel Peptide That Binds Monomeric and Aggregated β-Amyloid and Inhibits the Formation of Neurotoxic Oligomers. J Biol Chem 2015; 291:547-59. [PMID: 26538562 DOI: 10.1074/jbc.m115.679993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/06/2022] Open
Abstract
Although the formation of β-amyloid (Aβ) deposits in the brain is a hallmark of Alzheimer disease (AD), the soluble oligomers rather than the mature amyloid fibrils most likely contribute to Aβ toxicity and neurodegeneration. Thus, the discovery of agents targeting soluble Aβ oligomers is highly desirable for early diagnosis prior to the manifestation of a clinical AD phenotype and also more effective therapies. We have previously reported that a novel 15-amino acid peptide (15-mer), isolated via phage display screening, targeted Aβ and attenuated its neurotoxicity (Taddei, K., Laws, S. M., Verdile, G., Munns, S., D'Costa, K., Harvey, A. R., Martins, I. J., Hill, F., Levy, E., Shaw, J. E., and Martins, R. N. (2010) Neurobiol. Aging 31, 203-214). The aim of the current study was to generate and biochemically characterize analogues of this peptide with improved stability and therapeutic potential. We demonstrated that a stable analogue of the 15-amino acid peptide (15M S.A.) retained the activity and potency of the parent peptide and demonstrated improved proteolytic resistance in vitro (stable to t = 300 min, c.f. t = 30 min for the parent peptide). This candidate reduced the formation of soluble Aβ42 oligomers, with the concurrent generation of non-toxic, insoluble aggregates measuring up to 25-30 nm diameter as determined by atomic force microscopy. The 15M S.A. candidate directly interacted with oligomeric Aβ42, as shown by coimmunoprecipitation and surface plasmon resonance/Biacore analysis, with an affinity in the low micromolar range. Furthermore, this peptide bound fibrillar Aβ42 and also stained plaques ex vivo in brain tissue from AD model mice. Given its multifaceted ability to target monomeric and aggregated Aβ42 species, this candidate holds promise for novel preclinical AD imaging and therapeutic strategies.
Collapse
Affiliation(s)
- Renae K Barr
- From the Centre of Excellence for Alzheimer's Disease Research and Care School of Medical Sciences, Edith Cowan University, 270 Joondalup Dr., Joondalup, Western Australia 6027, Alzhyme Pty Ltd., Nedlands, Western Australia 6009
| | - Giuseppe Verdile
- the School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia 6102, the Sir James McCusker Alzheimer's Disease Research Unit, Suite 22, Hollywood Medical Centre, 85 Monash Ave., Nedlands, Western Australia 6009, the School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley 6009,
| | - Linda K Wijaya
- From the Centre of Excellence for Alzheimer's Disease Research and Care School of Medical Sciences, Edith Cowan University, 270 Joondalup Dr., Joondalup, Western Australia 6027
| | - Michael Morici
- From the Centre of Excellence for Alzheimer's Disease Research and Care School of Medical Sciences, Edith Cowan University, 270 Joondalup Dr., Joondalup, Western Australia 6027
| | - Kevin Taddei
- From the Centre of Excellence for Alzheimer's Disease Research and Care School of Medical Sciences, Edith Cowan University, 270 Joondalup Dr., Joondalup, Western Australia 6027, the Sir James McCusker Alzheimer's Disease Research Unit, Suite 22, Hollywood Medical Centre, 85 Monash Ave., Nedlands, Western Australia 6009
| | - Veer B Gupta
- From the Centre of Excellence for Alzheimer's Disease Research and Care School of Medical Sciences, Edith Cowan University, 270 Joondalup Dr., Joondalup, Western Australia 6027, Alzhyme Pty Ltd., Nedlands, Western Australia 6009, the Sir James McCusker Alzheimer's Disease Research Unit, Suite 22, Hollywood Medical Centre, 85 Monash Ave., Nedlands, Western Australia 6009
| | - Steve Pedrini
- From the Centre of Excellence for Alzheimer's Disease Research and Care School of Medical Sciences, Edith Cowan University, 270 Joondalup Dr., Joondalup, Western Australia 6027, Alzhyme Pty Ltd., Nedlands, Western Australia 6009, the Sir James McCusker Alzheimer's Disease Research Unit, Suite 22, Hollywood Medical Centre, 85 Monash Ave., Nedlands, Western Australia 6009
| | - Liang Jin
- the Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia, and
| | - Joseph A Nicolazzo
- the Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia, and
| | - Erin Knock
- the University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada
| | - Paul E Fraser
- the University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada
| | - Ralph N Martins
- From the Centre of Excellence for Alzheimer's Disease Research and Care School of Medical Sciences, Edith Cowan University, 270 Joondalup Dr., Joondalup, Western Australia 6027, Alzhyme Pty Ltd., Nedlands, Western Australia 6009, the Sir James McCusker Alzheimer's Disease Research Unit, Suite 22, Hollywood Medical Centre, 85 Monash Ave., Nedlands, Western Australia 6009, the School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley 6009,
| |
Collapse
|
10
|
Gelsolin bound β-amyloid peptides(1-40/1-42): electrochemical evaluation of levels of soluble peptide associated with Alzheimer's disease. Biosens Bioelectron 2014; 68:115-121. [PMID: 25562737 DOI: 10.1016/j.bios.2014.12.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022]
Abstract
A method for the highly sensitive determination of soluable β-amyloid peptides (Aβ(1-40/1-42)) that employs a detection bioconjugate of HRP-Au-gelsolin as the electrochemical nanoprobe is presented. Contrary to previous detection notions that utilized antibodies, which could specifically recognize the N- or C-terminus of peptides, we demonstrate herein that the reported specific binding between gelsolin and Aβ might provide an alternative way to evaluate the peptides sensitively and selectively. The HRP-Au-gelsolin nanohybrid was designed by one-pot functionalization of Au nanaoparticles (NPs) with horseradish peroxidase (HRP) and gelsolin. Through a sandwich-type sensor array, soluble Aβ(1-40/1-42) were captured onto the array due to the interactions between targeted peptides and surface-confined gelsolin and electrochemical signals were amplified by abundant attachments of HRP labeled on AuNPs, which could specifically catalyse its substrate, 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to give rise to measurable signals. The proposed gelsolin-bound Aβ methodology displayed satisfactory sensitivity and wide linear range towards Aβ(1-40/1-42) with a detection limit down to 28 pM, which are verified to be sensitive-enough for the assessment of Aβ levels both in normal and Alzheimer's disease (AD) rat brains. Experimental results indicated that compared with normal group, soluble β-amyloid peptide levels in cerebrospinal fluid (CSF) and targeted brain tissues of AD rats all declined with differentiable degrees. In short, the newly unfolding strategy presents valuable information related to pathological events in brain and will exhibit a braw perspective for the early diagnosis of AD process.
Collapse
|
11
|
Plasma Urotensin II Act as a Diagnostic Biomarker for Acute Coronary Syndromes. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|