1
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Vosoughi A, Zendehdel M, Hassanpour S. Central effects of the serotoninergic, GABAergic, and cholecystokinin systems on neuropeptide VF (NPVF)-induced hypophagia and feeding behavior in neonatal broiler chicken. Neurosci Lett 2024; 818:137557. [PMID: 37972685 DOI: 10.1016/j.neulet.2023.137557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The study was performed to evaluate the role of central serotoninergic, GABAergic, and cholecystokinin systems in neuropeptide VF (NPVF)-induced hypophagia in broiler chickens. In this study, 9 experiments were designed, each with one control and three treatment groups (n = 44 in each experiment). Control chicks of all groups were subjected to normal saline + Evans blue 0.1 % Intracerebroventricular (ICV) injection. In the first experiment, 3 groups of chicks received NPVF (4, 8, and 16 nmol). In experiment 2-9, one group of chicks received NPVF (16 nmol), another received 10 µg fluoxetine (serotonin reuptake inhibitor) (experiment 2), 1.25 µg PCPA (serotonin synthesis inhibitor) (experiment 3), 1.5 µg SB-242,084 (5-HT2C receptor antagonist) (experiment 4), 15.25 nmol 8-OH-DPAT (5-HT1A receptor antagonist) (experiment 5), 0.5 µg picrotoxin (GABAA receptor antagonist) (experiment 6), 20 ng CGP54626 (GABAB receptor antagonist) (experiment 7), 1 nmol devazepide (CCKA receptor antagonist) (experiment 8), and 1 nmol/L-365(-|-),260 (CCKB receptor antagonist) (experiment 9), and another final group received combination of specific neurotransmitter + NPVF Then, the cumulative food intake was measured until 120 min post-injection. ICV injection of NPVF (8 and 16 nmol) significantly decreased food intake (P < 0.05). Simultaneous injection of fluoxetine + NPVF and also picrotoxin + NPVF significantly increased hypophagia caused by NPVF (P < 0.05). However, co-administration of PCPA + NPVF and also SB242084 + NPVF significantly decreased NPVF-induced hypophagia (P < 0.05). Finally, 8-OH-DPAT, CGP54626, devazepide, and L-365,260 had no effect on the hypophagia brought on by NPVF (P > 0.05). Count-type behaviors were dose-dependent and decreased in groups that received NPVF compared to the control group (P < 0.05). Our finding recommended an interconnection between central NPVF and serotoninergic, GABAergic, and cholecystokinin systems in neonatal chickens.
Collapse
Affiliation(s)
- Anahita Vosoughi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Shahin Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Safikhani A, Zendehdel M, Khodadadi M, Rahmani B, Ghashghayi E, Mahdavi K. Hypophagia induced by intracerebroventricular injection of apelin-13 is mediated via CRF1/CRF2 and MC3/MC4 receptors in neonatal broiler chicken. Behav Brain Res 2023; 452:114536. [PMID: 37295613 DOI: 10.1016/j.bbr.2023.114536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Previous studies have shown the role of apelin and its receptors in the regulation of food intake. In the present study, we investigate the mediating role of melanocortin, corticotropin, and neuropeptide Y systems in apelin-13- induced food intake in broilers. Eight trials were run in the current investigation to ascertain the relationships between the aforementioned systems and apelin-13 on food intake and behavioral changes after apelin-13 administration. In experiment 1, hens were given an intracerebroventricular administration of a solution for control in addition to apelin-13 (0.25, 0.5, and 1 µg). Astressin-B (a CRF1/CRF2 receptor antagonist, 30 µg), apelin-13 (1 µg), and administration of astressin-B and apelin-13 concurrently, were all injected into the birds in experiment 2. Experiments 3 through 8 were quite similar to experiment 2, with the exception of astressin2-B (CRF2 receptor antagonist, 30 µg), SHU9119 (MC3/MC4 receptor antagonist, 0.5 nmol), MCL0020 (MC4 receptor antagonist, 0.5 nmol), BIBP-3226 (NPY1 receptor antagonist, 1.25 nmol), BIIE 0246 (NPY2 receptor antagonist, 1.25 nmol), and CGP71683A (NPY5 receptor antagonist, 1.25 nmol) were injected instead of astressin-B. After then, total food consumption was monitored for 6 h. Apelin-13 injections of 0.5 and 1 µg decreased feeding (P < 0.05). The hypophagic effects of apelin were attenuated following the simultaneous administration of Astressin-B and Astressin2-B with apelin-13 (P > 0.05). Co-infusion of SHU9119 and apelin-13 reduced the appetite-decreasing effects of apelin-13 (P > 0.05). When MCL0020 and apelin-13 were injected at the same time, the hypophagia that apelin-13 induced was eliminated (P > 0.05). BIBP-3226, BIIE 0246, and CGP71683A had no effect on the hypophagia brought on by apelin-13 (P > 0.05). Also, apelin-13 significantly increased number of steps, jumps, exploratory food, pecks and standing time while decreased siting time (P < 0.05). These findings suggest that apelin-13-induced hypophagia in hens may involve the CRF1/CRF2 and MC3/MC4 receptors.
Collapse
Affiliation(s)
- Amin Safikhani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Mina Khodadadi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Behrouz Rahmani
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2 Canada
| | - Elham Ghashghayi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
4
|
The Effect of the Central Administration of the Neuropeptide VF on Feed Intake and Its Possible Interactions with Glutamate and Opioid Systems in Broiler Chicken. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Koller J, Herzog H, Zhang L. The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 2021; 90:102198. [PMID: 34534716 DOI: 10.1016/j.npep.2021.102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.
Collapse
Affiliation(s)
- Julia Koller
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, UNSW Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lei Zhang
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Rahmani B, Ghashghayi E, Zendehdel M, Khodadadi M, Hamidi B. The Crosstalk Between Brain Mediators Regulating Food Intake Behavior in Birds: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10257-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|