1
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Kiesman WF, McPherson AK, Diorazio LJ, Van den Bergh L, Smith PD, Northall JM, Fettes A, Wang T, Mehlmann M, Raza S, Held G. Perspectives on the Designation of Oligonucleotide Starting Materials. Nucleic Acid Ther 2021; 31:93-113. [PMID: 33534646 PMCID: PMC7997719 DOI: 10.1089/nat.2020.0909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The designation of starting materials (SMs) for pharmaceuticals has been a topic of great interest and debate since the first ICH quality guidance was published. The increase in the number and variety of commercialized oligonucleotides (antisense oligonucleotides—ASOs, small interfering RNAs—siRNAs, etc.) in recent years has reignited dialogue on this topic because of the unique complexity of the monomeric nucleotides and other contributory materials used to manufacture oligonucleotides. The SM working group in the European Pharma Oligonucleotide Consortium (EPOC) was formed to help establish simple, risk-based criteria to guide the justification of oligonucleotide SMs. This article provides a description of the common types of SMs, classes of SM impurities, and control strategies that will be helpful to maintain manufacturing consistency.
Collapse
Affiliation(s)
- William F Kiesman
- Antisense Oligonucleotide Development and Manufacturing, Biogen, Inc., Cambridge, Massachusetts, USA
| | - Andrew K McPherson
- Process Organic Chemistry, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Louis J Diorazio
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | | | - Peter D Smith
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, United Kingdom
| | - John M Northall
- Chemical Development, Product Development and Supply, GlaxoSmithKline, Stevenage, United Kingdom
| | - Alec Fettes
- Pharmaceutical Division, Small Molecule Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tiejun Wang
- Global Regulatory Affairs, CMC & Devices, Sanofi, Bridgewater, New Jersey, USA
| | - Martin Mehlmann
- External Technical Oversight Analytics, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Syed Raza
- Amidite Manufacturing and Process Development, Thermo Fisher Scientific, Milwaukee, Wisconsin, USA
| | - Gary Held
- Amidite Quality Control and Analytical Development, Thermo Fisher Scientific, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Wu C, Xiang X, Yue Y, Li L, Li Y, Zhang C, Xu Y. CpG-PEG Conjugates and their Immune Modulating Effects after Systemic Administration. Pharm Res 2018; 35:80. [PMID: 29500548 DOI: 10.1007/s11095-018-2355-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs were found to be able to target cells that express Toll-like receptor 9 to modulate innate and adaptive immune reactions. But their in vivo application in immunotherapy against cancer has not been successful. We attempted in this study to examine polyethylene-glycol (PEG) conjugated CpG ODNs and investigated their mechanism of immune modulation in anti-cancer therapy. METHODS CpG-PEG conjugates with different PEG lengths were synthesized. In vitro activity as well as in vivo pharmacokinetics and pharmacodynamics properties were evaluated. RESULTS CpG-PEG20Ks were found to be able to persist longer in circulation and activate various downstream effector cells. After intravenous injection, they resulted in higher levels of IL-12p70 in the circulation and lower M-MDSC infiltrates in the tumor microenvironment. Such activities were different from those of CpG ODNs without PEGylation, suggesting different PK-PD profiles systemically and locally. CONCLUSIONS Our data support the development of CpG-PEGs as a new therapeutic agent that can be systemically administered to modulate immune responses and the microenvironment in tumor tissues.
Collapse
Affiliation(s)
- Caixing Wu
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Xiaofei Xiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yue
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yesen Li
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Chong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Xu
- College of Pharmacy and Chemistry, Dali University, Dali, China.
| |
Collapse
|
4
|
Dávalos A, Chroni A. Antisense oligonucleotides, microRNAs, and antibodies. Handb Exp Pharmacol 2015; 224:649-89. [PMID: 25523006 DOI: 10.1007/978-3-319-09665-0_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The specificity of Watson-Crick base pairing and the development of several chemical modifications to oligonucleotides have enabled the development of novel drug classes for the treatment of different human diseases. This review focuses on promising results of recent preclinical or clinical studies on targeting HDL metabolism and function by antisense oligonucleotides and miRNA-based therapies. Although many hurdles regarding basic mechanism of action, delivery, specificity, and toxicity need to be overcome, promising results from recent clinical trials and recent approval of these types of therapy to treat dyslipidemia suggest that the treatment of HDL dysfunction will benefit from these unique clinical opportunities. Moreover, an overview of monoclonal antibodies (mAbs) developed for the treatment of dyslipidemia and cardiovascular disease and currently being tested in clinical studies is provided. Initial studies have shown that these compounds are generally safe and well tolerated, but ongoing large clinical studies will assess their long-term safety and efficacy.
Collapse
Affiliation(s)
- Alberto Dávalos
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, Ctra. de Cantoblanco 8, 28049, Madrid, Spain,
| | | |
Collapse
|
5
|
Luo Z, Ye T, Ma Y, Gill HS, Nitin N. Microprecision delivery of oligonucleotides in a 3D tissue model and its characterization using optical imaging. Mol Pharm 2013; 10:2868-79. [PMID: 23795670 DOI: 10.1021/mp300717f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant potential of oligonucleotides (ONs) for therapeutic and diagnostic applications, rapid and widespread intracellular delivery of ONs in cells situated in tissues such as skin, head and neck cavity, and eye has not been achieved. This study was aimed at evaluating the synergistic combination of microneedle (MN) arrays and biochemical approaches for localized intratissue delivery of oligonucleotides in living cells in 3D tissue models. This synergistic combination was based on the ability of MNs to precisely deliver ONs into tissues to achieve widespread distribution, and the ability of biochemical agents (streptolysin O (SLO) and cholesterol conjugation to ONs) to enhance intracellular ON delivery. The results of this study demonstrate that ON probes were uniformly coated on microneedle arrays and were efficiently released from the microneedle surface upon insertion in tissue phantoms. Co-insertion of microneedles coated with ONs and SLO into 3D tissue models resulted in delivery of ONs into both the cytoplasm and nucleus of cells. Within a short incubation time (35 min), ONs were observed both laterally and along the depth of a 3D tissue up to a distance of 500 μm from the microneedle insertion point. Similar widespread intratissue distribution of ONs was achieved upon delivery of ON-cholesterol conjugates. Uniformity of ON delivery in tissues improved with longer incubation times (24 h) postinsertion. Using cholesterol-conjugated ONs, delivery of ON probes was limited to the cytoplasm of cells within a tissue. Finally, delivery of cholesterol-conjugated anti-GFP ON resulted in reduction of GFP expression in HeLa cells. In summary, the results of this study provide a novel approach for efficient intracellular delivery of ONs in tissues.
Collapse
Affiliation(s)
- Zhen Luo
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
6
|
Natural antisense transcript-targeted regulation of inducible nitric oxide synthase mRNA levels. Nitric Oxide 2013; 30:9-16. [DOI: 10.1016/j.niox.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/26/2012] [Accepted: 01/14/2013] [Indexed: 12/27/2022]
|
7
|
Rattanakiat S, Nishikawa M, Takakura Y. Self-assembling CpG DNA nanoparticles for efficient antigen delivery and immunostimulation. Eur J Pharm Sci 2012; 47:352-8. [PMID: 22771546 DOI: 10.1016/j.ejps.2012.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/25/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
DNA containing unmethylated deoxycytidylyl-deoxyguanosine (CpG) dinucleotides (CpG DNA) is a potent stimulator of immune responses through triggering of Toll-like receptor 9 (TLR9). In the present study, we synthesized cholesterol-modified CpG oligodeoxynucleotide (Chol-CpG ODN) and investigated its ability to form nanoparticles by self-assembling, then examined their immunostimulatory activity and potency to deliver antigens to antigen presenting cells (APCs). Chol-CpG ODN spontaneously formed particles in aqueous solutions. Cholesterol modification increased the stability of ODN in serum. Chol-CpG ODN was efficiently taken up by mouse macrophage-like RAW264.7 cells and induced a large amount of tumor necrosis factor-α compared with unmodified CpG ODN. Then, ovalbumin (OVA), a model antigen, was incorporated into Chol-CpG ODN nanoparticles. Cholesterol-modified GpC ODN (Chol-GpC ODN) was used to assess the importance of CpG motif on the antigen-specific immune response. Vaccination of mice with OVA/Chol-CpG ODN induced high level interferon-γ production from splenocytes. Furthermore, a high serum level of OVA-specific immunoglobulin G2a was observed in mice receiving OVA/Chol-CpG ODN. Neither CpG ODN nor Chol-GpC ODN was effective at all. These results indicate that self-assembling nanoparticles of Chol-CpG ODN are effective for inducing antigen-specific immune responses because of the high immunostimulatory activity, ability to incorporate antigens and tropism to APCs.
Collapse
Affiliation(s)
- Sakulrat Rattanakiat
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
8
|
Berti L, Woldeyesus T, Li Y, Lam KS. Maximization of loading and stability of ssDNA:iron oxide nanoparticle complexes formed through electrostatic interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18293-9. [PMID: 21047109 PMCID: PMC2994962 DOI: 10.1021/la103237e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The use of inorganic nanoparticles (NPs) as vectors for the delivery of oligonucleotides for in vitro and in vivo applications is rapidly gaining momentum. Some of the reasons making them especially good candidates for this purpose are their ease of synthesis in a range of sizes and surface coatings, their propensity to penetrate cell membranes, their stability and biocompatibility, and their unique size-dependent physical properties that impart additional diagnostic and therapeutic tools. Notwithstanding these notable attributes, a major obstacle to their practical use is given by the typically low oligonucleotide loading levels attainable through conventional bioconjugation procedures. This shortcoming is especially worrisome as toxicity concerns have been associated with codelivery of NPs. In this paper we are analytically analyzing the formation of electrostatic complexes between negatively charged ssDNA and positively charged iron oxide nanoparticles (SPIO-NP) with the purpose of identifying the optimal conditions leading to stable formulations at high oligo loading levels. The formation and loading levels of ssDNA:SPIO-NP complexes have been investigated at different oligo:NP ratios and under different ionic strengths through dynamic light scattering, fluorescence quenching experiments, and pull-down assays. Through these studies we have identified optimal conditions for attaining maximal oligo loading levels, and we are proposing a simple model to explain an unusual behavior observed in the formation of the complexes. Finally, we introduce an alternative loading method relying on the electrostatic coloading of an oligo sequence in the presence of a negatively charged PEGylated block copolymer, yielding very stable and high loading PEGylated ssDNA:SPIO-NPs. The findings that we are reporting are of general validity, and similar conditions could be easily translated to the electrostatic formation of ssDNA:NP complexes consisting of different NP materials and sizes.
Collapse
Affiliation(s)
- Lorenzo Berti
- University of California, Davis Department of Biochemistry and Molecular Medicine 2700 Stockton Blvd. Sacramento, CA 95817 U.S.A
| | - Temesgen Woldeyesus
- University of California, Davis Department of Biochemistry and Molecular Medicine 2700 Stockton Blvd. Sacramento, CA 95817 U.S.A
| | - Yuanpei Li
- University of California, Davis Department of Biochemistry and Molecular Medicine 2700 Stockton Blvd. Sacramento, CA 95817 U.S.A
| | - Kit S. Lam
- University of California, Davis Department of Biochemistry and Molecular Medicine 2700 Stockton Blvd. Sacramento, CA 95817 U.S.A
| |
Collapse
|
9
|
Joshi R, Mishra R, Pohmann R, Engelmann J. MR contrast agent composed of cholesterol and peptide nucleic acids: design, synthesis and cellular uptake. Bioorg Med Chem Lett 2010; 20:2238-41. [PMID: 20189384 DOI: 10.1016/j.bmcl.2010.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 11/16/2022]
Abstract
A new mRNA targeting contrast agent consisting of three main functional domains, (i) gadolinium based magnetic resonance reporter part, (ii) antisense peptide nucleic acids targeted to mRNA, and (iii) cholesterol as the delivery vector, was developed and synthesized. The new contrast agent showed efficient cellular uptake and significant contrast enhancement at very low labeling concentrations (0.5 microM). However, after uptake into cells the agent was located predominantly in endosomes like a similar cell penetrating peptide conjugated probe. Our results indicate that this newly developed contrast agent could be used for the labeling of cells for optical as well as magnetic resonance imaging.
Collapse
Affiliation(s)
- Rajendra Joshi
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | | | | |
Collapse
|
10
|
Ceckova M, Vackova Z, Radilova H, Libra A, Buncek M, Staud F. Effect of ABCG2 on cytotoxicity of platinum drugs: interference of EGFP. Toxicol In Vitro 2008; 22:1846-52. [PMID: 18801423 DOI: 10.1016/j.tiv.2008.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/31/2008] [Accepted: 09/02/2008] [Indexed: 11/16/2022]
Abstract
ATP-binding drug efflux transporters decrease intracellular concentrations of cytotoxic drugs, causing multidrug resistance in cancer. In this study, we examined possible interactions of ABCG2 transporter with platinum cytotoxic drugs. We demonstrate here an interference of platinum drugs with enhanced green fluorescence protein (EGFP) in the cellular models, where EGFP was employed as a reporter gene. Cytotoxicity of cisplatin (CIP), carboplatin (CAP) and oxaliplatin (OXP) was significantly lowered in MDCKII cells transfected with ABCG2 transporter and EGFP reporter. The IC(50) values in MDCKII-ABCG2 were 25.7, 164 and 165 microM for CIP, CAP and OXP, respectively, whereas IC(50) for the same cytostatics in MDCKII cells were as follows: 15.4, 133 and 50.3 microM. Addition of fumitremorgin C (FTC), a potent ABCG2 inhibitor, significantly suppressed the resistance of MDCKII-ABCG2 to OXP, suggesting that OXP interacts with ABCG2. However, FTC did not change the sensitivity of the cells to CIP and CAP. We assume that EGFP rather than ABCG2 causes the diminished toxicity of the platinum cytostatics in the transfected cells. This hypothesis was confirmed in human Hep2 cells expressing EGFP: using MTT test, IC(50) of 30.0, 247 and 27.9 microM were obtained for CIP, CAP and OXP, respectively, while 12.3, 106 and 20.5 microM were observed in the parent Hep2 cells. Employing neutral red cytotoxicity assay, similar data were obtained (IC(50) 7.73, 685 and 112 microM for CIP, CAP, and OXP, respectively, in the Hep2-EGFP cells and 1.65, 79.4 and 24.5 microM in the parent Hep2 cells). Caspase-3/7 assay revealed lower susceptibility of EGFP expressing Hep2 cells to apoptosis induced by CIP when compared to the parent cell line. We therefore conclude that EGFP in transfected cells interferes with cytotoxicity of platinum drugs by hindering the drug induced apoptosis and could cause misinterpretation of results obtained in cytotoxicity studies.
Collapse
Affiliation(s)
- Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | |
Collapse
|
11
|
Fu H, Ding J, Flutter B, Gao B. Investigation of endogenous antigen processing by delivery of an intact protein into cells. J Immunol Methods 2008; 335:90-7. [DOI: 10.1016/j.jim.2008.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 11/30/2022]
|
12
|
Tian YH, Xiong CL, Wan H, Huang DH, Guan HT, Ding XF, Shang XJ. Inhibition of the urokinase-type plasminogen activator by triplex-forming oligonucleotides in rat Sertoli cells: a new contraceptive alternative? Oligonucleotides 2007; 17:174-88. [PMID: 17638522 DOI: 10.1089/oli.2006.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Urokinase-type plasminogen activator (uPA), expressed in Sertoli cells in the testis, is closely related with tight junctions of blood-testis barrier (BTB), and it has been considered as a potential contraceptive target. In the present study, the antigene effects of triplex-forming oligodeoxynucleotides (TFO) targeting uPA in rat Sertoli cells were investigated in vitro. The stable triplexes, formed by uPA specific TFOs under physiological conditions, were tested by means of electrophoretic mobility shift assays (EMSA). Although tPA, another form of plasminogen activators (PAs), partially compensated the lose of PAs activities, uPA mRNA and protein were significantly reduced as demonstrated by real-time reverse transcription PCR and a chromogenic assay, after the treatment of Sertoli cells with uPA specific TFOs at a concentration of 330 nM. The capacity of TFOs resistance to nuclease degradation was enhanced by the phosphorothioated on the backbone of the oligonucleotides. Our results indicated that the TFOs can downregulate uPA expression and uPA might be an alternative contraceptive target.
Collapse
Affiliation(s)
- Yong-Hong Tian
- Center of Reproductive Medicine, Institute of Family Planning Research, Tongji Medical College, Huazhong Science and Technology University, Wuhan, Hubei Province, 430030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Yamayoshi A, Kato K, Suga S, Ichinoe A, Arima T, Matsuda T, Kato H, Murakami A, Wake N. Specific apoptosis induction in human papillomavirus-positive cervical carcinoma cells by photodynamic antisense regulation. Oligonucleotides 2007; 17:66-79. [PMID: 17461764 DOI: 10.1089/oli.2006.0047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human papillomavirus type 18 (HPV18) is frequently detected in cervical cancer cells. The viral proteins E6 and E7 are expressed consistently and have oncogenic activities. The E7 protein binds to a tumor suppressor, the retinoblastoma gene product (pRB), however, leading to the stabilization of tumor suppressor, p53 protein. On the other hand, another viral product, E6, forms complexes with p53 and abrogates its function, resulting in tumor progression. These facts imply that the E6 oncogene is one of the ideal targets for directed gene therapy in HPV-positive cervical cancer. In this study, we tried photodynamic antisense regulation of the antiapoptotic E6 expression using a photocross-linking reagent, 4,5',8-trimethylpsoralen, conjugated oligo(nucleoside phosphorothioate) (Ps-S-Oligo). This photodynamic antisense strategy effectively elicited the apoptotic death of HPV18-positive cervical cancer cells through the selective repression of E6 mRNA and consequent stabilization of p53 protein. E7-mediated signals potentially activated the p53 function and mobilized the p53 pathway to deliver pro-apoptotic signals to the cancer cells, leading to the suppression of in vivo tumorigenesis. An extremely low concentration of cisplatin in addition to Ps-S-Oligos further up-regulated p53 activity, provoking massive apoptotic induction. These results suggest that the photodynamic antisense strategy has the great therapeutic potential in HPV-positive cervical cancers.
Collapse
Affiliation(s)
- Asako Yamayoshi
- Department of Molecular Genetics, Division of Molecular and Cell Therapeutics, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cheng K, Ye Z, Guntaka RV, Mahato RI. Enhanced hepatic uptake and bioactivity of type alpha1(I) collagen gene promoter-specific triplex-forming oligonucleotides after conjugation with cholesterol. J Pharmacol Exp Ther 2006; 317:797-805. [PMID: 16452392 DOI: 10.1124/jpet.105.100347] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A triplex-forming oligonucleotide (TFO) specific for type alpha1(I) collagen promoter is a promising candidate for treating liver fibrosis. Earlier, we determined the pharmacokinetics and biodistribution of TFO after systemic administration into normal and fibrotic rats. In this study, we conjugated cholesterol to the 3' end of the TFO via a disulfide bond and determined its cellular and nuclear uptake and bioactivity using HSC-T6 cell lines in vitro, followed by biodistribution at whole-body, organ (liver), and subcellular levels. Conjugation with cholesterol had little effect on the triplex-forming ability of the TFO with target duplex DNA, and the cellular uptake of (33)P-TFO-cholesterol (Chol) increased by 2- to approximately 4-fold. Real-time reverse transcriptase-polymerase chain reaction analysis after transfection of HSC-T6 cells with TFO-Chol or TFO indicated that TFO-Chol had higher inhibition on type alpha1(I) collagen primary transcript than naked TFO at low concentration (200 nM) but showed similar inhibition at higher concentration (500 and 1000 nM). There was increase in the inhibition on primary transcript with transfection time. The hepatic uptake of (33)P-TFO-Chol after systemic administration was 72.22% of the dose compared with 45.8% of (33)P-TFO. There was significant increase in the uptake of (33)P-TFO-Chol by hepatic stellate cells and hepatocytes. More importantly, the nuclear uptake of TFO-Chol was higher than TFO in cell culture system and in vivo studies. In conclusion, TFO-Chol is a potential antifibrotic agent.
Collapse
Affiliation(s)
- Kun Cheng
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, 26 South Dunlap Street, Feurt 413, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|