1
|
Blumea lacera DC., accelerates the healing of acetic acid induced ulcerative colitis in rats by regulating oxidative stress and colonic inflammation: in-vivo and in silico molecular docking experiments. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Tanideh N, Sadeghi F, Amanat S, Firoozi D, Noorafshan A, Iraji A, Koohi-Hosseinabadi O. Protection by pure and genistein fortified extra virgin olive oil, canola oil, and rice bran oil against acetic acid-induced ulcerative colitis in rats. Food Funct 2020; 11:860-870. [DOI: 10.1039/c9fo01951k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conjugation of genistein and dietary oils improves the anti-inflammatory and antioxidant effects of genistein on colitis in rats.
Collapse
Affiliation(s)
- Nader Tanideh
- Colorectal Research Center and Department of Pharmacology
- School of Medicine
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Fatemeh Sadeghi
- School of Nutrition and Food Sciences
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Sasan Amanat
- Student Research Committee
- Larestan University of Medical Sciences
- Larestan
- Iran
| | - Donya Firoozi
- School of Nutrition and Food Sciences
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Centre
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Aida Iraji
- Central Research Laboratory
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | | |
Collapse
|
3
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Bassaganya-Riera J. Activation of LANCL2 by BT-11 Ameliorates IBD by Supporting Regulatory T Cell Stability Through Immunometabolic Mechanisms. Inflamm Bowel Dis 2018; 24:1978-1991. [PMID: 29718324 PMCID: PMC6241665 DOI: 10.1093/ibd/izy167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) afflicts 5 million people and is increasing in prevalence. There is an unmet clinical need for safer and effective treatments for IBD. The BT-11 is a small molecule oral therapeutic that ameliorates IBD by targeting lanthionine synthetase C-like 2 (LANCL2) and has a benign safety profile in rats. METHODS Mdr1a-/-, dextran sodium sulphate , and adoptive transfer mouse models of colitis were employed to validate therapeutic efficacy and characterize the mechanisms of therapeutic efficacy of BT-11. In vitro cultures of CD4+ T cell differentiation and human peripheral blood mononuclear cells from Crohn's disease patients were used to determine its potential for human translation. RESULTS BT-11 reduces inflammation in multiple mouse models of IBD. Oral treatment with BT-11 increases the numbers of lamina propria regulatory T cells (Tregs) in a LANCL2-dependent manner. In vitro, BT-11 increases the differentiation in Treg phenotypes, the upregulation of genes implicated in Treg cell stability, and conditions Treg cells to elicit greater suppressive actions. These immunoregulatory effects are intertwined with the ability of BT-11 to regulate late stage glycolysis and tricarboxylic acid cycle. Immunometabolic mechanistic findings translate into human peripheral blood mononuclear cells from healthy individuals and Crohn's disease patients. CONCLUSIONS BT-11 is a safe, efficacious oral therapeutic for IBD with a human translatable mechanism of action that involves activation of LANCL2, immunometabolic modulation of CD4+ T cell subsets leading to stable regulatory phenotypes in the colonic LP.
Collapse
Affiliation(s)
| | | | | | - Josep Bassaganya-Riera
- Landos Biopharma Inc, Blacksburg, VA,Correspondence address: Dr Josep Bassaganya-Riera Landos Biopharma Inc, 1800 Kraft Drive, Suite 216 Blacksburg VA 24060. E-mail:
| |
Collapse
|
4
|
Al-Jarallah A, Oriowo M. The effect of sphingosine-1-phosphate on colonic smooth muscle contractility: Modulation by TNBS-induced colitis. PLoS One 2017; 12:e0170792. [PMID: 28493876 PMCID: PMC5426588 DOI: 10.1371/journal.pone.0170792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/19/2016] [Indexed: 01/07/2023] Open
Abstract
Aim Increased levels of circulating sphingosine-1-phosphate (S1P) have been reported in ulcerative colitis. The objective of this study was to examine the effect of S1P on colonic smooth muscle contractility and how is it affected by colitis. Methods Colonic inflammation was induced by intrarectal administration of trinitrobenzene sulfonic acid. Five days later colon segments were isolated and used for contractility experiments and immunoblotting. Results S1P contracted control and inflamed colon segments and the contraction was significantly greater in inflamed colon segments. S1P-induced contraction was mediated by S1PR1 and S1PR2 in control and S1PR2 in inflamed colon segments. S1PR3 did not play a significant role in S1P-induced contractions in control or inflamed colon. S1PR1, S1PR2 and S1PR3 proteins were expressed in colon segments from both groups. The expression of S1PR1 and S1PR2 was significantly enhanced in control and inflamed colon segments, respectively. S1PR3 levels however were not significantly different between the two groups. Nifedipine significantly reduced S1P-induced contraction in control but not inflamed colon segments. Thapsigargin significantly reduced S1P-induced contraction of the inflamed colon. GF 109203X and Y-27632, alone abolished S1P-induced contraction of the control but not inflamed colon segments. Combination of GF 109203X, Y-27632 and thapsigargin abolished S1P-induced contraction of inflamed colon segments. Conclusion S1P contracted control colon via S1PR1 and S1PR2 and inflamed colon exclusively via S1PR2. Calcium influx (control) or release (inflamed) and calcium sensitization are involved in S1P-induced contraction. Exacerbated response to S1P in colitic colon segments may explain altered colonic motility reported in patients and experimental models of inflammatory bowel disease.
Collapse
Affiliation(s)
- Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Health Sciences Center, Kuwait University, Jabreya, Kuwait
- * E-mail:
| | - Mabayoje Oriowo
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Center, Kuwait University, Jabreya, Kuwait
| |
Collapse
|
5
|
Wang Y, Li JX, Ji GJ, Zhai K, Wang HH, Liu XG. The Involvement of Ca(2+) Signal Pathways in Distal Colonic Myocytes in a Rat Model of Dextran Sulfate Sodium-induced Colitis. Chin Med J (Engl) 2017; 129:1185-92. [PMID: 27174327 PMCID: PMC4878164 DOI: 10.4103/0366-6999.181968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Disrupted Ca2+ homeostasis contributes to the development of colonic dysmotility in ulcerative colitis (UC), but the underlying mechanisms are unknown. This study aimed to examine the alteration of colonic smooth muscle (SM) Ca2+ signaling and Ca2+ handling proteins in a rat model of dextran sulfate sodium (DSS)-induced UC. Methods: Male Sprague-Dawley rats were randomly divided into control (n = 18) and DSS (n = 17) groups. Acute colitis was induced by 5% DSS in the drinking water for 7 days. Contractility of colonic SM strips (controls, n = 8 and DSS, n = 7) was measured in an organ bath. Cytosolic resting Ca2+ levels (n = 3 in each group) and Ca2+ transients (n = 3 in each group) were measured in single colonic SM cells. Ca2+ handling protein expression was determined by Western blotting (n = 4 in each group). Differences between control and DSS groups were analyzed by a two-sample independent t-test. Results: Average tension and amplitude of spontaneous contractions of colonic muscle strips were significantly enhanced in DSS-treated rats compared with controls (1.25 ± 0.08 g vs. 0.96 ± 0.05 g, P = 0.007; and 2.67 ± 0.62 g vs. 0.52 ± 0.10 g, P = 0.013). Average tensions of carbachol-evoked contractions were much weaker in the DSS group (1.08 ± 0.10 g vs. 1.80 ± 0.19 g, P = 0.006). Spontaneous Ca2+ transients were observed in more SM cells from DSS-treated rats (15/30 cells) than from controls (5/36 cells). Peak caffeine-induced intracellular Ca2+ release was lower in SM cells of DSS-treated rats than controls (0.413 ± 0.046 vs. 0.548 ± 0.041, P = 0.033). Finally, several Ca2+ handling proteins in colonic SM were altered by DSS treatment, including sarcoplasmic reticulum calcium-transporting ATPase 2a downregulation and phospholamban and inositol 1,4,5-trisphosphate receptor 1 upregulation. Conclusions: Impaired intracellular Ca2+ signaling of colonic SM, caused by alteration of Ca2+ handing proteins, contribute to colonic dysmotility in DSS-induced UC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Jun-Xia Li
- Department of Gastroenterology, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Guang-Ju Ji
- Department of Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kui Zhai
- Department of Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua-Hong Wang
- Department of Gastroenterology, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Xin-Guang Liu
- Department of Gastroenterology, Peking University First Hospital, Peking University, Beijing 100034, China
| |
Collapse
|
6
|
Tumor necrosis factor-neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility. Inflamm Bowel Dis 2013; 19:2535-46. [PMID: 24108115 PMCID: PMC4180268 DOI: 10.1097/01.mib.0000437042.59208.9f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuro-immune interactions play a significant role in regulating the severity of inflammation. Our previous work demonstrated that neuropeptide Y (NPY) is upregulated in the enteric nervous system during murine colitis and that NPY knockout mice exhibit reduced inflammation. Here, we investigated if NPY expression during inflammation is induced by tumor necrosis factor (TNF), the main proinflammatory cytokine. METHODS Using primary enteric neurons and colon explant cultures from wild type and NPY knockout (NPY(-/-)) mice, we determined if NPY knockdown modulates TNF release and epithelial permeability. Further, we assessed if NPY expression is inducible by TNF in enteric neuronal cells and mouse model of experimental colitis, using the TNF inhibitors-etanercept (blocks transmembrane and soluble TNF) and XPro1595 (blocks soluble TNF only). RESULTS We found that enteric neurons express TNF receptors (TNFR1 and R2). Primary enteric neurons from NPY(-/-) mice produced less TNF compared with wild type. Further, TNF activated NPY promoter in enteric neurons through phospho-c-Jun. NPY(-/-) mice had decreased intestinal permeability. In vitro, NPY increased epithelial permeability through phosphatidyl inositol-3-kinase (PI3-K)-induced pore-forming claudin-2. TNF inhibitors attenuated NPY expression in vitro and in vivo. TNF inhibitor-treated colitic mice exhibited reduced NPY expression and inflammation, reduced oxidative stress, enhanced neuronal survival, and improved colonic motility. XPro1595 had more protective effects on neuronal survival and motility compared with etanercept. CONCLUSIONS We demonstrate a novel TNF-NPY cross talk that modulates inflammation, barrier functions, and colonic motility during inflammation. It is also suggested that selective blocking of soluble TNF may be a better therapeutic option than using anti-TNF antibodies.
Collapse
|
7
|
Khan I, Batinic-Haberle I, Benov LT. Effect of potent redox-modulating manganese porphyrin, MnTM-2-PyP, on the Na+/H+exchangers NHE-1 and NHE-3 in the diabetic rat. Redox Rep 2013; 14:236-42. [DOI: 10.1179/135100009x12525712409698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
8
|
Wadie W, Abdel-Aziz H, Zaki HF, Kelber O, Weiser D, Khayyal MT. STW 5 is effective in dextran sulfate sodium-induced colitis in rats. Int J Colorectal Dis 2012; 27:1445-53. [PMID: 22562255 PMCID: PMC3474908 DOI: 10.1007/s00384-012-1473-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE An herbal preparation, STW 5, used clinically in functional dyspepsia and irritable bowel syndrome, has been shown to possess properties that may render it useful in inflammatory bowel disease (IBD). The present work was conducted to study its effectiveness in a rat model of IBD. METHODS An experimental model reflecting ulcerative colitis in man was adopted, whereby colitis was induced in Wistar rats by feeding them 5 % dextran sulfate sodium (DSS) in drinking water for one week. STW 5 and sulfasalazine (as a reference standard) were administered orally daily for 1 week before colitis induction and continued during DSS feeding. The animals were then sacrificed, and the severity of colitis was evaluated macroscopically and microscopically. Colon samples were homogenized for determination of reduced glutathione, tumor necrosis factor-α, and cytokine-induced neutrophil chemoattractant-3 as well as myeloperoxidase, glutathione peroxidase, and superoxide dismutase. In addition, colon segments were suspended in an organ bath to test their reactivity towards carbachol, KCl, and trypsin. RESULTS STW 5 and sulfasalazine were both effective in preventing the shortening of colon length and the increase in both colon mass index and total histology score as well as the changes in biochemical parameters measured except changes in dismutase activity. DSS-induced colitis led to marked depression in colonic responsiveness to the agents tested ex vivo, an effect which was normalized by both drugs. CONCLUSIONS The findings point to a potential usefulness of STW 5 in the clinical setting of ulcerative colitis.
Collapse
Affiliation(s)
- Walaa Wadie
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abdel-Aziz
- Department of Pharmacology, Institute of Pharmaceutical Chemistry, University of Münster, Münster, Germany
| | - Hala F. Zaki
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olaf Kelber
- Scientific Department, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Dieter Weiser
- Scientific Department, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Mohamed T. Khayyal
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Perrino BA. Regulation of gastrointestinal motility by Ca2+/calmodulin-stimulated protein kinase II. Arch Biochem Biophys 2011; 510:174-81. [PMID: 21443856 PMCID: PMC3134147 DOI: 10.1016/j.abb.2011.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 12/30/2022]
Abstract
Gastrointestinal (GI) motility ultimately depends upon the contractile activity of the smooth muscle cells of the tunica muscularis. Integrated functioning of multiple tissues and cell types, including enteric neurons and interstitial cells of Cajal (ICC) is necessary to generate coordinated patterns of motor activity that control the movement of material through the digestive tract. The neurogenic mechanisms that govern GI motility patterns are superimposed upon intrinsic myogenic mechanisms regulating smooth muscle cell excitability. Several mechanisms regulate smooth muscle cell responses to neurogenic inputs, including the multifunctional Ca(2+)/calmodulin-stimulated protein kinase II (CaMKII). CaMKII can be activated by Ca(2+) transients from both extracellular and intracellular sources. Prolonging the activities of Ca(2+)-sensitive K(+) channels in the plasma membrane of GI smooth muscle cells is an important regulatory mechanism carried out by CaMKII. Phospholamban (PLN) phosphorylation by CaMKII activates the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA), increasing both the rate of Ca(2+) clearance from the myoplasm and the frequency of localized Ca(2+) release events from intracellular stores. Overall, CaMKII appears to moderate GI smooth muscle cell excitability. Finally, transcription factor activities may be facilitated by the neutralization of HDAC4 by CaMKII phosphorylation, which may contribute to the phenotypic plasticity of GI smooth muscle cells.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, 89557, USA.
| |
Collapse
|
10
|
Siddique I, Khan I. Mechanism of regulation of Na-H exchanger in inflammatory bowel disease: role of TLR-4 signaling mechanism. Dig Dis Sci 2011; 56:1656-62. [PMID: 21221801 DOI: 10.1007/s10620-010-1524-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/09/2010] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated the role of toll-like receptor-4 (TLR-4) signal transduction in the regulation of Na-H exchanger-1 isoform (NHE-1) in ulcerative colitis (UC). METHODS Colonic biopsies from control and UC patients were selected from four groups: controls (group 1), untreated UC patients (group 2), UC patients treated with 5'-aminosalicylic acid (5'-ASA) plus steroid (group 3), and UC patients treated with 5'-ASA plus azathioprine (AZA) (group 4). Patients presenting with abdominal pain (n = 13) and a normal colon on endoscopy served as controls. NHE-1, TLR-4, MyD88, NFkB and actin protein levels were estimated using Western blot analysis and sodium pump activity (PNPase) by a spectrophotometeric method. Myeloperoxidase (MPO) activity and histologic evaluation confirmed inflammation. RESULTS PNPase activity decreased significantly (P < 0.05) in the untreated UC patients as compared to the controls or treated UC groups 3 and 4. There was a significant decrease of NHE-1 and a significant increase (P < 0.05) of TLR-4, MyD88 and NFkB protein levels in the untreated UC or 5'-ASA plus steroid treated UC patients as compared to the controls. NHE-1, TLR-4, MyD88 and NFkB protein levels were not significantly different in 5'-ASA plus AZA treated biopsies as compared to controls. The level of actin remained unaltered. Inflammatory cells' infiltration and MPO activity increased significantly in the untreated UC, but was significantly lower in the treated UC groups 3 and 4 (P < 0.05). CONCLUSIONS These findings suggest that NHE-1 in UC is regulated by NFkB induced through TLR-4 and MyD88 signaling mechanism. These findings identify TLR-4 as a putative therapeutic target for IBD.
Collapse
Affiliation(s)
- Iqbal Siddique
- Department of Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
11
|
Al-Shamali A, Khan I. Expression of Na-H exchanger-8 isoform is suppressed in experimental colitis in adult rat: lack of reversibility by dexamethasone. Scand J Gastroenterol 2011; 46:20-9. [PMID: 20950207 DOI: 10.3109/00365521.2010.521890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Mechanism of the apical transporter Na-H exchanger-8 (NHE-8) regulation was investigated by examining the effects of anti-inflammatory dexamethasone in experimental colitis. In addition, its localization was investigated in the lipid rich membrane domain called membrane rafts. MATERIAL AND METHODS Colitis was induced by trinitrobenzene sulfonic acid (TNBS) and colon segments were removed from 5 day post-TNBS and used to estimate the levels of NHE-8 protein and mRNA using ECL western blot analysis and a competitive RT-PCR method. Myeloperoxidase activity, malondialdehyde levels and histologic changes were evaluated. RESULTS NHE-8 protein level was decreased in inflamed colon and was not reversed by dexamethasone. However, mRNA levels remained unchanged in inflamed colon. The levels of NHE-8 protein and mRNA were not significantly different in non-colitic control as compared to dexamethasone treated non-colitis. Elevation of myeloperoxidase activity, malondialdehyde and infiltration of inflammatory cells in inflamed colon were suppressed by dexamethasone treatment of colitis significantly. Furthermore, NHE-8 protein was not detected in the detergent resistant membrane (DRM) or lipid rafts, but was present in the detergent sensitive membrane (DRS) fractions. Actin showed its partition similar to NHE-8. On the contrary, NHE-3 was present in both DRM and DRS fractions. Flotillin-1 and caveolin were enriched in the fractions designated as lipid rafts. CONCLUSIONS These findings demonstrate the suppression of NHE-8 protein in inflamed adult rat colon, which seems to be regulated post-transcriptionally. Furthermore, the absence of NHE-8 in lipid rafts suggests its regulation independent of cAMP or recycling through endocytosis unlike NHE-3 isoform.
Collapse
Affiliation(s)
- Amna Al-Shamali
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
12
|
Qureshi S, Song J, Lee HT, Koh SD, Hennig GW, Perrino BA. CaM kinase II in colonic smooth muscle contributes to dysmotility in murine DSS-colitis. Neurogastroenterol Motil 2010; 22:186-95, e64. [PMID: 19735476 PMCID: PMC2806503 DOI: 10.1111/j.1365-2982.2009.01406.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Altered calcium mobilization has been implicated in the development of colonic dysmotility in inflammatory bowel disease. The aim of this study was to investigate the mechanisms by which disrupted intracellular Ca(2+) signalling contributes to the impaired contractility of colon circular smooth muscles. METHODS Acute colitis was induced in C57Bl/6 mice with dextran sulphate sodium (DSS) in the drinking water for 5 days. KEY RESULTS Spontaneous and acetylcholine-evoked contractions, caffeine-evoked hyperpolarization, and SERCA2 and phospholamban expression were reduced compared with controls. Tetrodotoxin did not restore control levels of contractile activity. The amplitudes, but not the frequency, of intracellular Ca(2+) waves were increased compared with controls. Caffeine abolished intracellular Ca(2+) waves in control smooth muscle cells, but not in smooth muscle cells from DSS-treated mice. CaM kinase II activity and cytosolic levels of HDAC4 were increased, and I kappaB alpha levels were decreased in distal colon smooth muscles from DSS-treated mice. CONCLUSIONS & INFERENCES These results suggest that disruptions in intracellular Ca(2+) mobilization due to down-regulation of SERCA2 and phospholamban expression lead to increased CaM kinase II activity and cytosolic HDAC4 that may contribute to the dysmotility of colonic smooth muscles in colitis by enhancing NF-kappaB activity.
Collapse
Affiliation(s)
- Sadeea Qureshi
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | - Sang Don Koh
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Grant W. Hennig
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
13
|
Impaired acetylcholine-induced smooth muscle contraction in colitis involves altered calcium mobilization and AKT phosphorylation. Pflugers Arch 2008; 456:507-17. [DOI: 10.1007/s00424-007-0415-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/26/2007] [Accepted: 11/29/2007] [Indexed: 12/26/2022]
|