1
|
Khajedehi N, Fathi R, Akbarinejad V, Gourabi H. Oocyte Vitrification Reduces its Capability to Repair Sperm DNA Fragmentation and Impairs Embryonic Development. Reprod Sci 2024; 31:1256-1267. [PMID: 38151654 DOI: 10.1007/s43032-023-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Oocytes play a crucial role in repairing sperm DNA damage, which can affect the next generation; however, certain factors can impair this ability. This study examined whether oocyte vitrification, a widely used method for fertility preservation, negatively affects repair ability. Male DBA/2 mice (n = 28) were injected with 101.60 µmol/100 g body weight of tert-Butyl hydroperoxide (tBHP) for 14 days to induce sperm DNA damage. Histological changes, sperm functions, and DNA fragmentation were assessed using the TUNEL assay. Cumulus-oocyte-complexes (COCs) of superovulated female DBA/2 mice (n = 28) were vitrified using the Cryotop method. Fresh and vitrified oocytes were then fertilized by tBHP-treated and untreated sperms, and subsequent embryonic development was monitored. Additionally, the expression of Mre11a, Rad51, Brca1, and Xrcc4 was assessed in resulting zygotes and blastocysts using real-time PCR. The sperm tBHP treatment reduced differentiated spermatogenic cells in the testicular tissue, sperm concentration, and motility, while increasing DNA fragmentation (P < 0.05). The fertilization rate was decreased in the tBHP-treated sperm-vitrified oocyte group (P < 0.05), and the two-cell rate diminished in tBHP-treated sperm-fresh and vitrified oocyte groups (P < 0.05). The four-cell to blastocyst rate decreased in the untreated sperm-vitrified oocyte and the tBHP-treated sperm-fresh and vitrified oocyte groups (P < 0.05), and the tBHP-treated sperm-vitrified oocyte groups had the lowest blastocyst rate. In zygotes, Brca1 was upregulated in the tBHP-treated sperm-vitrified oocyte group (P < 0.05). Also, in blastocysts, Rad51, Brca1, and Xrcc4 were significantly upregulated in the untreated sperm-vitrified oocytes group (P < 0.05). Damages to the oocyte due to vitrification can disrupt the repair of sperm DNA fragmentation and consequently impair the embryo development.
Collapse
Affiliation(s)
- Niloofar Khajedehi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Peng Y, Lin H, Tian S, Liu S, Li J, Lv X, Chen S, Zhao L, Pu F, Chen X, Shu H, Qing X, Shao Z. Glucagon-like peptide-1 receptor activation maintains extracellular matrix integrity by inhibiting the activity of mitogen-activated protein kinases and activator protein-1. Free Radic Biol Med 2021; 177:247-259. [PMID: 34737144 DOI: 10.1016/j.freeradbiomed.2021.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Disruption of the intervertebral disc extracellular matrix (ECM) is a hallmark of intervertebral disc degeneration (IDD), which is largely attributed to excessive oxidative stress. However, there is a lack of clinically feasible approaches to promote the reconstruction of the disc ECM. Glucagon-like peptide-1 (GLP-1), a safe polypeptide hormone adopted to treat type 2 diabetes mellitus, has shown great potential for relieving oxidative stress-related damage. To our knowledge, this is the first study to reveal that exenatide, a GLP-1 receptor (GLP-1R) agonist, can upregulate disc ECM synthesis and attenuate oxidative stress-induced ECM degradation and IDD. Mechanistically, we found that exenatide inhibited the activation of mitogen-activated protein kinases (MAPK) signaling pathway and the formation of BATF/JUNs heterodimers (an index of activator protein-1 (AP-1) activity). The restoration of MAPK signaling activation reversed the protective effects of exenatide and enhanced downstream BATF/JUNs binding. BATF overexpression was also found to aggravate disc ECM damage, even in the presence of exenatide. In summary, exenatide is an effective agent that regulates ECM anabolic balance and restores disc degeneration by inhibiting MAPK activation and its downstream AP-1 activity. The present study provides a therapeutic rationale for activating the GLP-1 receptor against IDD and establishes the important role of AP-1 activity in the pathogenesis of IDD.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:854265. [PMID: 26146529 PMCID: PMC4471379 DOI: 10.1155/2015/854265] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/07/2015] [Indexed: 01/04/2023]
Abstract
Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.
Collapse
|
4
|
TBHP-induced oxidative stress alters microRNAs expression in mouse testis. J Assist Reprod Genet 2014; 31:1287-93. [PMID: 25141839 DOI: 10.1007/s10815-014-0302-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Reactive oxygen species (ROS) and oxidative stress is one of the main reasons of male infertility. MicroRNAs (miRNAs) regulate multiple intracellular processes. Alterations in miRNAs expression may occur in different conditions and diseases. In this study, the effect of oxidative stress induced by tertiary-butyl hydroperoxide (TBHP) on the expression of candidate miRNAs in mouse testis was investigated. METHODS After determining median lethal dose (LD50), TBHP was intraperitoneally (ip) injected at the dilution of 1:10 LD50 into the adult male mice for 2 weeks, and then testis tissues were removed in order to assay the ROS level. Total RNA was extracted and the expression of five miRNAs was quantified by reverse transcription-real time polymerase chain reaction (RT-qPCR). RESULTS The flow cytometry analysis showed a significant increase in ROS level in testis. The expression of three out of five selected miRNAs, including miR-34a, miR-181b and miR-122a, showed some degrees of changes following exposure to oxidative stress. These miRNAs are involved in antioxidant responses, inflammation pathway and spermatogenesis arrest. CONCLUSIONS In conclusion, TBHP alters the miRNA expression profile of testis which might play a potential role in oxidative and antioxidative responses and spermatogenesis.
Collapse
|
5
|
Shivananjappa MM, Muralidhara. Differential oxidative stress induction and lethality of rat embryos after maternal exposure to t-butyl hydroperoxide during postimplantation period. Drug Chem Toxicol 2012; 36:209-16. [PMID: 22947016 DOI: 10.3109/01480545.2012.710622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In mammals, reactive oxygen species (ROS) are essential factors for cell proliferation, differentiation, and growth, notably during gestation, but are also potentially damaging agents. The present study describes the extent and pattern of oxidative stress (OS) induction in maternal milieu, placenta, and embryos of rats after in vivo exposure to sublethal doses of a well-known model prooxidant, such as t-butyl hydroperoxide (tbHP). tbHP administered (intraperitoneally) to pregnant rats on specific gestation days (GDs) (either GD(5-7) or GD(8-10)) at dosages of [one tenth the median lethal dose (LD(50)) and one fifth LD(50)/day) caused significant OS, as evident by enhancement of malondialdehyde (MDA) and ROS levels, depleted reduced glutathione levels and elevated protein carbonyl content in maternal liver and kidney. Further, tbHP treatment also caused significant oxidative impairments in placenta, whereas the weights were marginally increased. Further, tbHP treatment induced a higher incidence of embryonic lethality (4- to 6-fold higher than controls) and induced marked OS among GD(13) embryos, as evidenced by elevated MDA, ROS generation, altered redox status, and enzymatic antioxidant defenses, suggesting the vulnerability of embryos. Interestingly, incidence of embryonic mortality and degree of oxidative dysfunctions caused by tbHP treatment during GD(5-7) was relatively higher, compared with GD(8-10), suggesting differential susceptibility of embryos during the early postimplantation period. Based on these findings, it is hypothesized that critical windows during early gestation may account for the differential susceptibility of developing embryos to pro-oxidants and necessitate a better understanding of this embryonic response to pro-oxidant exposures.
Collapse
Affiliation(s)
- Mahesh Mysore Shivananjappa
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, Karnataka, India
| | | |
Collapse
|
6
|
Fatemi N, Sanati MH, Jamali Zavarehei M, Ayat H, Esmaeili V, Golkar-Narenji A, Zarabi M, Gourabi H. Effect of tertiary-butyl hydroperoxide (TBHP)-induced oxidative stress on mice sperm quality and testis histopathology. Andrologia 2012; 45:232-9. [PMID: 22803951 DOI: 10.1111/j.1439-0272.2012.01335.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2012] [Indexed: 11/29/2022] Open
Abstract
Male infertility is responsible for approximately 50% of infertility worldwide. Reactive oxygen species are one of the major causes of male infertility. In this study, the effects of oxidative stress induced by tertiary-butyl hydroperoxide (TBHP) on sperm quality and testis tissue are investigated. After determination of LD50 , TBHP with a concentration of 1 : 10 LD50 was injected in adult male mice strains Balb/c for two consecutive weeks. Their testis tissues were used for cell viability, histopathology analysis and ROS assay. The epididymis was also surveyed for sperm analysis by CASA system. The sperm motility, count and viability decreased in the TBHP-treated mice compared to the control mice. The flow cytometry analysis showed a significant increase in H2 O2 and O2 ·- levels in both testis and sperm within 2 weeks after intraperitoneal injection. Body weights revealed no treatment-related effects, but atrophy of testis and a decrease of testis cells viability were observed. The results showed that exposure to TBHP could lead to morphological changes in seminiferous tubules. TBHP-induced oxidative stress caused a decrease in sperm parameters and testis cells viability. That is due to an increase level of ROS in the testis and their deleterious effects on genomic levels.
Collapse
Affiliation(s)
- N Fatemi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Na W, Peng G, Jianping Z, Yanzhong C, Shengjiang G, Li C. RhoA/ROCK may involve in cardiac hypertrophy induced by experimental hyperthyroidism. Toxicol Ind Health 2011; 28:831-9. [PMID: 22072613 DOI: 10.1177/0748233711425069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, the role of the RhoA/Rho-kinase (RhoA/ROCK)-signaling pathway in cardiovascular dysfunction associated with hyperthyroidism was examined with the use of fasudil, a Rho-kinase inhibitor. Male Spraque-Dawley rats were treated with l-thyroxine (T(4)) alone, T(4) + low-dose fasudil (2 mg/kg/day) or T(4) + high-dose fasudil (10 mg/kg/day) and compared with control animals. Rats in the T(4) group showed an increase in the ratio of heart weight to body weight, which was ameliorated by fasudil at both low and high doses. Morphometric and hemodynamic parameters were also evaluated and confirmed that fasudil attenuated the cardiac hypertrophy induced by T(4). The extent of phosphorylation of the myosin phosphatase targeting subunit was quantified by Western blotting to evaluate the activity of Rho-kinase in the heart tissue. Both Western blotting and reverse transcriptase-polymerase chain reaction analyses revealed enhancement of Rho-kinase and activator protein 1 activity and reduction of c-FLIP(L) expression in the T(4) group, and this response was inhibited by fasudil in a dose-dependent manner. Furthermore, fasudil inhibited apoptosis induced by T(4) as evidenced by the detection of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and the expressions of bax and bcl-2. These results suggested that the RhoA/ROCK pathway is involved in the cardiac hypertrophy induced by experimental hyperthyroidism. The antagonism of this pathway may thus be useful as an alternative target in the treatment of hyperthyroid heart disease.
Collapse
Affiliation(s)
- Wang Na
- Department of Pharmacology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | | | |
Collapse
|
8
|
Bhattacharya S, Chatterjee S, Manna P, Das J, Ghosh J, Gachhui R, Sil PC. Prophylactic role of D-Saccharic acid-1,4-lactone in tertiary butyl hydroperoxide induced cytotoxicity and cell death of murine hepatocytes via mitochondria-dependent pathways. J Biochem Mol Toxicol 2011; 25:341-354. [PMID: 21538728 DOI: 10.1002/jbt.20393] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/15/2011] [Accepted: 02/26/2011] [Indexed: 12/15/2022]
Abstract
D-Saccharic acid 1,4-lactone (DSL) is a derivative of D-glucaric acid. It is a beta-glucuronidase inhibitor and possesses anticarcinogenic, detoxifying, and antioxidant properties. In the present study, the protective effects of DSL were investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in vitro using murine hepatocytes. Exposure of TBHP caused a reduction in cell viability, enhanced the membrane leakage, and disturbed the intracellular antioxidant machineries in murine hepatocytes. Investigating the signaling mechanism of TBHP-induced cellular pathophysiology and protective action of DSL, we found that TBHP exposure disrupted mitochondrial membrane potential, facilitated cytochrome c release in the cytosol, and led to apoptotic cell death via mitochondria-dependent pathways. DSL counteracted these changes and maintained normalcy in hepatocytes. Combining, results suggest that DSL possesses the ability to ameliorate TBHP-induced oxidative insult, cytotoxicity, and apoptotic cell death probably due to its antioxidant activity and functioning via mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Semantee Bhattacharya
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Kolkata 700 032, India
| | | | | | | | | | | | | |
Collapse
|
9
|
Ghosh M, Manna P, Sil PC. Protective role of a coumarin-derived schiff base scaffold against tertiary butyl hydroperoxide (TBHP)-induced oxidative impairment and cell death via MAPKs, NF-κB and mitochondria-dependent pathways. Free Radic Res 2011; 45:620-637. [PMID: 21391895 DOI: 10.3109/10715762.2011.564166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study investigated the antioxidant signalling mechanism of a coumarin-derived schiff base (CSB) scaffold against tert-butylhydroperoxide (TBHP) induced oxidative insult in murine hepatocytes. CSB possesses DPPH and other free radical scavenging activities. TBHP reduced cell viability and intracellular antioxidant status accompanied by an increase in intracellular ROS production in hepatocytes. TBHP also activated phospho-ERK1/2, phospho-p38 and NF-κB, altered the Bcl-2/Bad ratio, reduced mitochondrial membrane potential, released cytochrome C and activated caspase 3, suggesting that TBHP induced oxidative stress responsive cell death via apoptotic pathway. FACS analysis and DNA fragmentation studies also confirmed the apoptotic cell death in TBHP exposed hepatocytes. Treatment with CSB effectively reduced these adverse effects by preventing the oxidative insult, alteration in the redox-sensitive signalling cascades and mitochondrial events. Combining, results suggest that antioxidant property of CSB make the molecule to be a potential protective measure against oxidative insult, cytotoxicity and cell death.
Collapse
Affiliation(s)
- Manoranjan Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | | | | |
Collapse
|
10
|
Alterations in the expression of genes related to NF-κB signaling in liver and kidney of CuZnSOD-deficient mice. Mol Cell Biochem 2011; 353:151-7. [PMID: 21472504 DOI: 10.1007/s11010-011-0781-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
NF-κB signaling pathway plays a central role in regulation of the cellular response to stress. Among numerous factors that modulate NF-κB dependent transcription, reactive oxygen species attracted special attention. In the present work, we compared the expression of 84 genes related to NF-κB signaling between cytosolic superoxide dismutase (CuZnSOD)-deficient and wild-type mice. In kidney, we found seven genes which expression was significantly affected by CuZnSOD deficiency. Among them, four were up-regulated, Egr1, Fos, Il1b, Tnfrsf10b, and three down-regulated, Card10, Ikbkb, Tgfbr2. In the case of liver, six genes were up-regulated, Fos, Il1b, Il1r1, Jun, Tlr7, Tnfrsf10b, and five down-regulated, Casp8, Ikbke, Irak1, Nfkb1, Raf1. The results demonstrate that CuZnSOD deficiency has a significant impact on the expression of NF-κB related genes in both kidney and liver. The differences in gene expression reported in our work may contribute to understanding of the molecular mechanisms underlying phenotypic abnormalities in CuZnSOD-deficient mice, e.g., increase in the incidence of liver cancer.
Collapse
|
11
|
Sarkar MK, Sil PC. Prevention of tertiary butyl hydroperoxide induced oxidative impairment and cell death by a novel antioxidant protein molecule isolated from the herb, Phyllanthus niruri. Toxicol In Vitro 2010; 24:1711-1719. [PMID: 20510348 DOI: 10.1016/j.tiv.2010.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/13/2010] [Accepted: 05/19/2010] [Indexed: 12/16/2022]
Abstract
The present study has been designed and carried out to investigate the mechanism of the protective action of a novel antioxidant protein molecule, isolated from the herb, Phyllanthus niruri (PNP), against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death. Incubation of hepatocytes with PNP prevented TBHP-induced loss in cell viability and enhanced LDH leakage in a dose-dependent manner. Reduction in GSH/GSSG ratio and activities of antioxidant enzymes have also been found to be prevented by this protein. Moreover, TBHP exposure caused injury in cellular mitochondria, disrupted mitochondrial membrane potential, induced reciprocal regulation of Bcl-2 family proteins and facilitated cytochrome c release in the cytosol. In addition, TBHP introduces apoptosis as the primary phenomena of cell death as evidenced by DAPI staining, flow cytometric analyses and studies on the activation of caspases. PNP treatment, however, counteracted these changes and maintains normalcy in hepatocytes. Combining, data suggest that PNP possesses cytoprotective activity against TBHP-induced oxidative cellular damage and prevents hepatocytes from apoptotic death.
Collapse
Affiliation(s)
- Mrinal K Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | |
Collapse
|
12
|
Fernandes AS, Gaspar J, Cabral MF, Rueff J, Castro M, Batinic-Haberle I, Costa J, Oliveira NG. Protective role of ortho-substituted Mn(III) N-alkylpyridylporphyrins against the oxidative injury induced by tert-butylhydroperoxide. Free Radic Res 2010; 44:430-40. [PMID: 20102317 DOI: 10.3109/10715760903555844] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present work addresses the role of two ortho-substituted Mn(III) N-alkylpyridylporphyrins, alkyl being ethyl in MnTE-2-PyP(5+) and n-hexyl in MnTnHex-2-PyP(5+), on the protection against the oxidant tert-butylhydroperoxide (TBHP). Their protective role was studied in V79 cells using endpoints of cell viability (MTT and crystal violet assays), intracellular O(2)*- generation (dihydroethidium assay) and glutathione status (DTNB and monochlorobimane assays). MnPs per se did not show cytotoxicity (up to 25 microM, 24 h). The exposure to TBHP resulted in a significant decrease in cell viability and in an increase in the intracellular O(2)(*-) levels. Also, TBHP depleted total and reduced glutathione and increased GSSG. The two MnPs counteracted remarkably the effects of TBHP. Even at low concentrations, both MnPs were protective in terms of cell viability and abrogated the intracellular O(2)(*-) increase in a significant way. Also, they augmented markedly the total and reduced glutathione contents in TBHP-treated cells, highlighting the multiple mechanisms of protection of these SOD mimics, which at least in part may be ascribed to their electron-donating ability.
Collapse
Affiliation(s)
- Ana S Fernandes
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kalia S, Bansal M. p53 is involved in inducing testicular apoptosis in mice by the altered redox status following tertiary butyl hydroperoxide treatment. Chem Biol Interact 2008; 174:193-200. [DOI: 10.1016/j.cbi.2008.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/27/2022]
|