1
|
Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT, Deng LB, Wang XL, Wang JB, Ji GJ, Fu M, Deng KY, Xin HB. CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med 2017; 21:1492-1502. [PMID: 28296029 PMCID: PMC5542907 DOI: 10.1111/jcmm.13076] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2O2‐induced injury and hypoxia/reoxygenation‐induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs‐mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang‐II)‐induced cardiac hypertrophy. Following 14 days of Ang‐II infusion with osmotic mini‐pumps, a comparable hypertension was generated in both of CD38 knockout and wild‐type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild‐type mice compared with CD38 knockout mice. Consistently, RNAi‐induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang‐II‐stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca2+ release induced by Ang‐II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca2+‐NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiao-Hui Guan
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xuan Hong
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ning Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiao-Hong Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yun-Fei Xiao
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ting-Tao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Li-Bin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiao-Lei Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jian-Bin Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Guang-Ju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Mingui Fu
- Department of Basic Medical Science, Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Histone deacetyltransferase inhibitors Trichostatin A and Mocetinostat differentially regulate MMP9, IL-18 and RECK expression, and attenuate Angiotensin II-induced cardiac fibroblast migration and proliferation. Hypertens Res 2016; 39:709-716. [PMID: 27278287 DOI: 10.1038/hr.2016.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/08/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023]
Abstract
Histone acetylation/deacetylation plays a key role in the epigenetic regulation of multiple pro-fibrotic genes. Here we investigated the effects of histone deacetyltransferase (HDAC) inhibition on angiotensin (Ang)-II-induced pro-fibrotic changes in adult mouse cardiac fibroblasts (CF). CF express class I HDACs 1 and 2, and Ang-II induces their activation. Notably, silencing HDAC1 or HDAC2 attenuated Ang-II induced CF proliferation and migration. Under basal conditions, HDAC1 dimerizes with HDAC2 in CF and Ang-II reversed this interaction. Treatment with Trichostatin A (TSA), a broad-spectrum HDAC inhibitor, restored their physical association, and attenuated Ang-II-induced MMP9 expression, IL-18 induction, and extracellular matrix (collagen I, collagen III and fibronectin) production. Further, TSA inhibited Ang-II-induced MMP9 and Il18 transcription by blocking NF-κB and AP-1 binding to their respective promoter regions. By inhibiting Sp1 binding to RECK promoter, TSA reversed Ang-II-induced RECK suppression, collagen and fibronectin expression, and CF migration and proliferation. The class I-specific HDAC inhibitor Mocetinostat (MGCD) recapitulated TSA effects on Ang-II-treated CF. Together, these results demonstrate that targeting HDACs attenuates the pro-inflammatory and pro-fibrotic effects of Ang-II on CF.
Collapse
|
3
|
Trichostatin A induces a unique set of microRNAs including miR-129-5p that blocks cyclin-dependent kinase 6 expression and proliferation in H9c2 cardiac myocytes. Mol Cell Biochem 2016; 415:39-49. [DOI: 10.1007/s11010-016-2675-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/17/2016] [Indexed: 01/07/2023]
|
4
|
Tao H, Shi KH, Yang JJ, Li J. Epigenetic mechanisms in atrial fibrillation: New insights and future directions. Trends Cardiovasc Med 2015; 26:306-18. [PMID: 26475117 DOI: 10.1016/j.tcm.2015.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. AF is a complex disease that results from genetic and environmental factors and their interactions. In recent years, numerous studies have shown that epigenetic mechanisms significantly participate in AF pathogenesis. Even though a poor understanding of the molecular and electrophysiologic mechanisms of AF, accumulated evidence has suggested that the relevance of epigenetic changes in the development of AF. The aim of this review is to describe the present knowledge about the epigenetic regulatory features significantly participates in AF, and look ahead on new perspectives of epigenetic mechanisms research. Epigenetic regulatory features such as DNA methylation, histone modification, and microRNA influence gene expression by epigenetic mechanisms and by directly binding to various factor response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of factors-induced epigenetic alterations as informative factors in the risk assessment process. In this review, new insight into the epigenetic mechanisms in AF pathogenesis is discussed, with special emphasis on DNA methylation, histone modification, and microRNA. Further studies are needed to reveal the potential targets of epigenetic mechanisms, and it can be developed as a therapeutic target for AF.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China.
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Butts B, Gary RA, Dunbar SB, Butler J. The Importance of NLRP3 Inflammasome in Heart Failure. J Card Fail 2015; 21:586-93. [PMID: 25982825 DOI: 10.1016/j.cardfail.2015.04.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/08/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
Abstract
Patients with heart failure continue to suffer adverse health consequences despite advances in therapies over the past 2 decades. Identification of novel therapeutic targets that may attenuate disease progression is therefore needed. The inflammasome may play a central role in modulating chronic inflammation and in turn affecting heart failure progression. The inflammasome is a complex of intracellular interaction proteins that trigger maturation of proinflammatory cytokines interleukin-1β and interleukin-18 to initiate the inflammatory response. This response is amplified through production of tumor necrosis factor α and activation of inducible nitric oxide synthase. The purpose of this review is to discuss recent evidence implicating this inflammatory pathway in the pathophysiology of heart failure.
Collapse
Affiliation(s)
- Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Rebecca A Gary
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Sandra B Dunbar
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Javed Butler
- Cardiology Division, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
6
|
Lin L, Liu X, Xu J, Weng L, Ren J, Ge J, Zou Y. High-density lipoprotein inhibits mechanical stress-induced cardiomyocyte autophagy and cardiac hypertrophy through angiotensin II type 1 receptor-mediated PI3K/Akt pathway. J Cell Mol Med 2015; 19:1929-38. [PMID: 25946687 PMCID: PMC4549043 DOI: 10.1111/jcmm.12567] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 12/24/2022] Open
Abstract
Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor-dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress-induced cardiac hypertrophy and autophagy. A 48-hr mechanical stretch and a 4-week transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial autophagy using LC3b-II and beclin-1. Our results indicated that HDL significantly reduced mechanical stretch-induced rise in autophagy as demonstrated by LC3b-II and beclin-1. In addition, mechanical stress up-regulated AT1 receptor expression in both cultured cardiomyocytes and in mouse hearts, whereas HDL significantly suppressed the AT1 receptor. Furthermore, the role of Akt phosphorylation in HDL-mediated action was assessed using MK-2206, a selective inhibitor for Akt phosphorylation. Our data further revealed that MK-2206 mitigated HDL-induced beneficial responses on cardiac remodelling and autophagy. Taken together, our data revealed that HDL inhibited mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of AT1 receptor, and HDL ameliorated cardiac hypertrophy and autophagy via Akt-dependent mechanism.
Collapse
Affiliation(s)
- Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebo Liu
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfeng Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Liqing Weng
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Abstract
There is a worldwide epidemic of cardiovascular diseases causing not only a public health issue but also accounting for trillions of dollars of healthcare expenditure. Studies pertaining to epidemiology, pathophysiology, molecular biology, gene identification and genetic linkage maps have been able to lay a strong foundation for both the diagnosis and treatment of cardiovascular medicine. Although the concept of 'epigenetics' is not recent, the term in current usage is extended from the initial concept of 'controlling developmental gene expression and signaling pathways in undifferentiated zygotes' to include heritable changes to gene expression that are not from differences in the genetic code. The impact of epigenetics in cardiovascular disease is now emerging as an important regulatory key player at different levels from pathophysiology to therapeutics. This review focuses on the emerging role of epigenetics in major cardiovascular medicine specialties such as coronary artery disease, heart failure, cardiac hypertrophy and diabetes.
Collapse
Affiliation(s)
- Charbel Abi Khalil
- Department of Genetic Medicine and Department of Medicine, Weill Cornell Medical College - Qatar, PO Box 24144, Doha, Qatar
| |
Collapse
|
8
|
Majumdar G, Adris P, Bhargava N, Chen H, Raghow R. Pan-histone deacetylase inhibitors regulate signaling pathways involved in proliferative and pro-inflammatory mechanisms in H9c2 cells. BMC Genomics 2012; 13:709. [PMID: 23249388 PMCID: PMC3561284 DOI: 10.1186/1471-2164-13-709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/12/2012] [Indexed: 01/19/2023] Open
Abstract
Background We have shown previously that pan-HDAC inhibitors (HDACIs) m-carboxycinnamic acid bis-hydroxamide (CBHA) and trichostatin A (TSA) attenuated cardiac hypertrophy in BALB/c mice by inducing hyper-acetylation of cardiac chromatin that was accompanied by suppression of pro-inflammatory gene networks. However, it was not feasible to determine the precise contribution of the myocytes- and non-myocytes to HDACI-induced gene expression in the intact heart. Therefore, the current study was undertaken with a primary goal of elucidating temporal changes in the transcriptomes of cardiac myocytes exposed to CBHA and TSA. Results We incubated H9c2 cardiac myocytes in growth medium containing either of the two HDACIs for 6h and 24h and analyzed changes in gene expression using Illumina microarrays. H9c2 cells exposed to TSA for 6h and 24h led to differential expression of 468 and 231 genes, respectively. In contrast, cardiac myocytes incubated with CBHA for 6h and 24h elicited differential expression of 768 and 999 genes, respectively. We analyzed CBHA- and TSA-induced differentially expressed genes by Ingenuity Pathway (IPA), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Core_TF programs and discovered that CBHA and TSA impinged on several common gene networks. Thus, both HDACIs induced a repertoire of signaling kinases (PTEN-PI3K-AKT and MAPK) and transcription factors (Myc, p53, NFkB and HNF4A) representing canonical TGFβ, TNF-α, IFNγ and IL-6 specific networks. An overrepresentation of E2F, AP2, EGR1 and SP1 specific motifs was also found in the promoters of the differentially expressed genes. Apparently, TSA elicited predominantly TGFβ- and TNF-α-intensive gene networks regardless of the duration of treatment. In contrast, CBHA elicited TNF-α and IFNγ specific networks at 6 h, followed by elicitation of IL-6 and IFNγ-centered gene networks at 24h. Conclusions Our data show that both CBHA and TSA induced similar, but not identical, time-dependent, gene networks in H9c2 cardiac myocytes. Initially, both HDACIs impinged on numerous genes associated with adipokine signaling, intracellular metabolism and energetics, and cell cycle. A continued exposure to either CBHA or TSA led to the emergence of a number of apoptosis- and inflammation-specific gene networks that were apparently suppressed by both HDACIs. Based on these data we posit that the anti-inflammatory and anti-proliferative actions of HDACIs are myocyte-intrinsic. These findings advance our understanding of the mechanisms of actions of HDACIs on cardiac myocytes and reveal potential signaling pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Gipsy Majumdar
- Department of Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA
| | | | | | | | | |
Collapse
|
9
|
Kalozoumi G, Tzimas C, Sanoudou D. The expanding role of epigenetics. Glob Cardiol Sci Pract 2012; 2012:7. [PMID: 25610838 PMCID: PMC4239821 DOI: 10.5339/gcsp.2012.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/20/2012] [Indexed: 12/13/2022] Open
Affiliation(s)
- Georgia Kalozoumi
- Department of Pharmacology, Medical School, University of Athens, Greece
| | - Christos Tzimas
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Department of Pharmacology, Medical School, University of Athens, Greece ; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
10
|
Murray DR, Mummidi S, Valente AJ, Yoshida T, Somanna NK, Delafontaine P, Dinarello CA, Chandrasekar B. β2 adrenergic activation induces the expression of IL-18 binding protein, a potent inhibitor of isoproterenol induced cardiomyocyte hypertrophy in vitro and myocardial hypertrophy in vivo. J Mol Cell Cardiol 2011; 52:206-18. [PMID: 22004899 DOI: 10.1016/j.yjmcc.2011.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/03/2011] [Accepted: 09/25/2011] [Indexed: 11/25/2022]
Abstract
Both the sympathetic nervous system and the proinflammatory cytokine interleukin-18 (IL-18) play key roles in the pathophysiology of the hypertrophied failing heart. IL-18 binding protein (IL-18BP), a natural inhibitor of IL-18, counters its biological effects. β-AR stimulation induces IL-18 expression, but whether it also regulates IL-18BP is not known. Here we demonstrate that the β-AR agonist isoproterenol (ISO) increases steady state IL-18BP mRNA and protein levels in adult mouse cardiomyocytes in a β(2)-AR-dependent manner. We cloned mouse Il18bp 5'cis-regulatory region, and identified putative CREB and C/EBPβ transcription factor-binding sites. Forced expression of mutant CREB or C/EBPβ knockdown markedly attenuated ISO-induced Il18bp transcription and deletion or mutation of CREB and C/EBP motifs in the Il18bp promoter reduced ISO-induced promoter-reporter gene activity. ISO induced CREB and C/EBPβ activation in cardiomyocytes via PI3K/Akt and ERK1/2. Importantly, ISO-induced hypertrophy in vitro was dependent on IL-18 induction as it was blunted by IL-18 neutralizing antibodies and forced expression of IL-18BP. Moreover, ISO-induced hypertrophy was markedly attenuated in IL-18 null and IL-18BP transgenic mice. These data support the novel concept that β-AR activation, in addition to inducing cardiomyocyte hypertrophy via IL-18, concomitantly induces a countering effect by stimulating IL-18BP expression, and that ISO-induced cardiomyocyte hypertrophy may result from a net effect of IL-18 and IL-18BP induction.
Collapse
Affiliation(s)
- David R Murray
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, United States
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Majumdar G, Rooney RJ, Johnson IM, Raghow R. Panhistone deacetylase inhibitors inhibit proinflammatory signaling pathways to ameliorate interleukin-18-induced cardiac hypertrophy. Physiol Genomics 2011; 43:1319-33. [PMID: 21954451 DOI: 10.1152/physiolgenomics.00048.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We investigated the genome-wide consequences of pan-histone deacetylase inhibitors (HDACIs) trichostatin A (TSA) and m-carboxycinnamic acid bis-hydroxamide (CBHA) in the hearts of BALB/c mice eliciting hypertrophy in response to interleukin-18 (IL-18). Both TSA and CBHA profoundly altered cardiac chromatin structure that occurred concomitantly with normalization of IL-18-induced gene expression and amelioration of cardiac hypertrophy. The hearts of mice exposed to IL-18+/-TSA or CBHA elicited distinct gene expression profiles. Of 184 genes that were differentially regulated by IL-18 and TSA, 33 were regulated in an opposite manner. The hearts of mice treated with IL-18 and/or CBHA elicited 147 differentially expressed genes (DEGs), a third of which were oppositely regulated by IL-18 and CBHA. Ingenuity Pathways and Kyoto Encyclopedia of Genes and Genomes analyses of DEGs showed that IL-18 impinged on TNF-α- and IFNγ-specific gene networks relegated to controlling immunity and inflammation, cardiac metabolism and energetics, and cell proliferation and apoptosis. These TNF-α- and IFNγ-specific gene networks, extensively connected with PI3K, MAPK, and NF-κB signaling pathways, were oppositely regulated by IL-18 and pan-HDACIs. Evidently, both TSA and CBHA caused a two- to fourfold induction of phosphatase and tensin homolog expression to counteract IL-18-induced proinflammatory signaling and cardiac hypertrophy.
Collapse
Affiliation(s)
- Gipsy Majumdar
- Department of Veterans Affairs Medical Center, University of Tennessee Health Science Center, Memphis, TN 38104, USA
| | | | | | | |
Collapse
|
12
|
Tsuda J, Li W, Yamanishi H, Yamamoto H, Okuda A, Kubo S, Ma Z, Terada N, Tanaka Y, Okamura H. Involvement of CD56brightCD11c+ Cells in IL-18–Mediated Expansion of Human γδ T Cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:2003-12. [DOI: 10.4049/jimmunol.1001919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Abstract
Zoledronate (Zol) has recently been shown to expand gammadelta T cells that play important roles in host defenses against infection and tumors. In this study, we examined effects of interleukin-18 (IL-18) on expansion of gammadelta T cells in human peripheral blood mononuclear cells (PBMCs) stimulated by Zol and IL-2. The expansion of gammadelta T cells stimulated by Zol and IL-2 was strongly promoted by exogenous IL-18, and to the contrary, inhibited by neutralizing anti-IL-18 receptor antibody. The gammadelta T cells that expanded in the presence of Zol, IL-2, and IL-18 exhibited the phenotype of effector memory cells characterized by CD44 (+), CD27 (-), and CD45RA (-). In addition, they expressed NKG2D, perforin, CD94, CD25, and CD122, and 15% to 40% of them were positive for CD56. Incubation of gammadelta T cells in the presence with IL-18 produced GM-CSF, IFN-gamma, and TNF-alpha at much higher levels than those incubated without IL-18. They showed strong cytotoxicity against tumor cells including mesothelioma cells and inhibited growth of xenograft of mesothelioma in mice. These observations indicate that IL-18 can efficiently promote expansion of gammadelta T cells with potent antitumor activity.
Collapse
|
14
|
|
15
|
Li W, Yamamoto H, Kubo S, Okamura H. Modulation of innate immunity by IL-18. J Reprod Immunol 2009; 83:101-5. [DOI: 10.1016/j.jri.2009.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 01/06/2023]
|
16
|
Pandorf CE, Haddad F, Wright C, Bodell PW, Baldwin KM. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. Am J Physiol Cell Physiol 2009; 297:C6-16. [PMID: 19369448 DOI: 10.1152/ajpcell.00075.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in chromatin biology have enhanced our understanding of gene regulation. It is now widely appreciated that gene regulation is dependent upon post-translational modifications to the histones which package genes in the nucleus of cells. Active genes are known to be associated with acetylation of histones (H3ac) and trimethylation of lysine 4 in histone H3 (H3K4me3). Using chromatin immunoprecipitation (ChIP), we examined histone modifications at the myosin heavy chain (MHC) genes expressed in fast vs. slow fiber-type skeletal muscle, and in a model of muscle unloading, which results in a shift to fast MHC gene expression in slow muscles. Both H3ac and H3K4me3 varied directly with the transcriptional activity of the MHC genes in fast fiber-type plantaris and slow fiber-type soleus. During MHC transitions with muscle unloading, histone H3 at the type I MHC becomes de-acetylated in correspondence with down-regulation of that gene, while upregulation of the fast type IIx and IIb MHCs occurs in conjunction with enhanced H3ac in those MHCs. Enrichment of H3K4me3 is also increased at the type IIx and IIb MHCs when these genes are induced with muscle unloading. Downregulation of IIa MHC, however, was not associated with corresponding loss of H3ac or H3K4me3. These observations demonstrate the feasibility of using the ChIP assay to understand the native chromatin environment in adult skeletal muscle, and also suggest that the transcriptional state of types I, IIx and IIb MHC genes are sensitive to histone modifications both in different muscle fiber-types and in response to altered loading states.
Collapse
Affiliation(s)
- Clay E Pandorf
- Dept. of Physiology and Biophysics, Univ. of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|