1
|
Patinios C, Creutzburg SCA, Arifah AQ, Adiego-Pérez B, Gyimah E, Ingham C, Kengen SWM, van der Oost J, Staals RHJ. Streamlined CRISPR genome engineering in wild-type bacteria using SIBR-Cas. Nucleic Acids Res 2021; 49:11392-11404. [PMID: 34614191 PMCID: PMC8565351 DOI: 10.1093/nar/gkab893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR-Cas is a powerful tool for genome editing in bacteria. However, its efficacy is dependent on host factors (such as DNA repair pathways) and/or exogenous expression of recombinases. In this study, we mitigated these constraints by developing a simple and widely applicable genome engineering tool for bacteria which we termed SIBR-Cas (Self-splicing Intron-Based Riboswitch-Cas). SIBR-Cas was generated from a mutant library of the theophylline-dependent self-splicing T4 td intron that allows for tight and inducible control over CRISPR-Cas counter-selection. This control delays CRISPR-Cas counter-selection, granting more time for the editing event (e.g. by homologous recombination) to occur. Without the use of exogenous recombinases, SIBR-Cas was successfully applied to knock-out several genes in three wild-type bacteria species (Escherichia coli MG1655, Pseudomonas putida KT2440 and Flavobacterium IR1) with poor homologous recombination systems. Compared to other genome engineering tools, SIBR-Cas is simple, tightly regulated and widely applicable for most (non-model) bacteria. Furthermore, we propose that SIBR can have a wider application as a simple gene expression and gene regulation control mechanism for any gene or RNA of interest in bacteria.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Sjoerd C A Creutzburg
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Adini Q Arifah
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Evans A Gyimah
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Colin J Ingham
- Hoekmine Besloten Vennootschap, Kenniscentrum Technologie en Innovatie, Hogeschool Utrecht, 3584 CS, Utrecht, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
2
|
Abstract
Abstract
The radiosynthesis of 99mTc-Novobiocin (99mTc-NBN) complex and its suitability as a radiotracer for infection imaging was assessed. The radiochemical purity (RCP) of the 99mTc-NBN complex was determined using radio-TLC and radioactive HPLC and biodistribution was studied in artificially infected (A.I.) rats and rabbit, using single well gamma counter (SWGRC) interface with scalar count rate meter (SCRM) and Gamma Camera (γ-CM). The maximum RCP observed for the preparation having 2 mg of NBN, 111 MBq of sodium pertechnetate (Na99mTcO4) and 125 μL of SnF2 (1 μg/μL in 0.01 N HCl) at a pH 5.6 was 98.97±0.40% and remained stable >90% up to 120 min. The activity of the 99mTc-NBN in the infected muscle (TI) was significantly increased from 6.50±0.15 to 19.00±0.17% and decreased in the inflamed muscle (TII), normal muscle (NT), blood, liver, spleen, stomach and intestine within 120 min. The TI/NT and TII/NT ratios were 7.60±1.08 and 1.60±1.14. The Whole Body Static (WBS) images of A.I. rabbit were obtained at 30, 40, 50 and 60 min after the I.V. administration of 111 MBq of 99mTc-NBN to the A.I. rabbit. The stability in saline and serum, higher TI/NT, lower TII/NT ratios and WBS images confirmed the feasibility of the 99mTc-NBN complex as an infection imaging agent.
Collapse
Affiliation(s)
| | - M. R. Khan
- University of Peshawar, Phyotopharmaceutical & Neutraceuticals Researc, Peshawar, NWFP, Pakistan
| | - A. U. Khan
- Oncology and Radiotherapy Institute, Nuclear Medicine, Islamabad, Pakistan
| |
Collapse
|