1
|
Rong T, Wei B, Ao M, Zhao H, Li Y, Zhang Y, Qin Y, Zhou J, Zhou F, Chen Y. Enhanced Anti-Atherosclerotic Efficacy of pH-Responsively Releasable Ganglioside GM3 Delivered by Reconstituted High-Density Lipoprotein. Int J Mol Sci 2021; 22:ijms222413624. [PMID: 34948420 PMCID: PMC8704253 DOI: 10.3390/ijms222413624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the atheroprotective role of endogenous GM3 and an atherogenesis-inhibiting effect of exogenous GM3 suggested a possibility of exogenous GM3 being recruited as an anti-atherosclerotic drug. This study seeks to endow exogenous GM3 with atherosclerotic targetability via reconstituted high-density lipoprotein (rHDL), an atherosclerotic targeting drug nanocarrier. Unloaded rHDL, rHDL loaded with exogenous GM3 at a low concentration (GM3L-rHDL), and rHDL carrying GM3 at a relatively high concentration (GM3H-rHDL) were prepared and characterized. The inhibitory effect of GM3-rHDL on lipid deposition in macrophages was confirmed, and GM3-rHDL did not affect the survival of red blood cells. In vivo experiments using ApoE-/- mice fed a high fat diet further confirmed the anti-atherosclerotic efficacy of exogenous GM3 and demonstrated that GM3 packed in HDL nanoparticles (GM3-rHDL) has an enhanced anti-atherosclerotic efficacy and a reduced effective dose of GM3. Then, the macrophage- and atherosclerotic plaque-targeting abilities of GM3-rHD, most likely via the interaction of ApoA-I on GM3-rHDL with its receptors (e.g., SR-B1) on cells, were certified via a microsphere-based method and an aortic fragment-based method, respectively. Moreover, we found that solution acidification enhanced GM3 release from GM3-rHDL nanoparticles, implying the pH-responsive GM3 release when GM3-rHDL enters the acidic atherosclerotic plaques from the neutral blood. The rHDL-mediated atherosclerotic targetability and pH-responsive GM3 release of GM3-rHDL enhanced the anti-atherosclerotic efficacy of exogenous GM3. The development of the GM3-rHDL nanoparticle may help with the application of exogenous GM3 as a clinical drug. Moreover, the data imply that the GM3-rHDL nanoparticle has the potential of being recruited as a drug nanocarrier with atherosclerotic targetability and enhanced anti-atherosclerotic efficacy.
Collapse
Affiliation(s)
- Tong Rong
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Bo Wei
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
| | - Meiying Ao
- School of Basic Medical Sciences, Jiangxi University of Chinese Medicine, Nanchang 330025, China;
| | - Haonan Zhao
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Yuanfang Li
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Yang Zhang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Ying Qin
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Jinhua Zhou
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Fenfen Zhou
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Yong Chen
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
- Correspondence: ; Tel./Fax: +86-791-8396-9963
| |
Collapse
|
2
|
Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment. Cells 2021; 10:cells10102507. [PMID: 34685487 PMCID: PMC8534120 DOI: 10.3390/cells10102507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids, associated enzymes, and the sphingolipid pathway are implicated in complex, multifaceted roles impacting several cell functions, such as cellular homeostasis, apoptosis, cell differentiation, and more through intrinsic and autocrine/paracrine mechanisms. Given this broad range of functions, it comes as no surprise that a large body of evidence points to important functions of sphingolipids in hematopoiesis. As the understanding of the processes that regulate hematopoiesis and of the specific characteristics that define each type of hematopoietic cells is being continuously refined, the understanding of the roles of sphingolipid metabolism in hematopoietic lineage commitment is also evolving. Recent findings indicate that sphingolipid alterations can modulate lineage commitment from stem cells all the way to megakaryocytic, erythroid, myeloid, and lymphoid cells. For instance, recent evidence points to the ability of de novo sphingolipids to regulate the stemness of hematopoietic stem cells while a substantial body of literature implicates various sphingolipids in specialized terminal differentiation, such as thrombopoiesis. This review provides a comprehensive discussion focused on the mechanisms that link sphingolipids to the commitment of hematopoietic cells to the different lineages, also highlighting yet to be resolved questions.
Collapse
|
3
|
Song JH, Kim GT, Park KH, Park WJ, Park TS. Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease. Biomol Ther (Seoul) 2021; 29:373-383. [PMID: 33903284 PMCID: PMC8255146 DOI: 10.4062/biomolther.2020.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is the deposition of plaque in the main arteries. It is an inflammatory condition involving the accumulation of macrophages and various lipids (low-density lipoprotein [LDL] cholesterol, ceramide, S1P). Moreover, endothelial cells, macrophages, leukocytes, and smooth muscle cells are the major players in the atherogenic process. Sphingolipids are now emerging as important regulators in various pathophysiological processes, including the atherogenic process. Various sphingolipids exist, such as the ceramides, ceramide-1-phosphate, sphingosine, sphinganine, sphingosine-1-phosphate (S1P), sphingomyelin, and hundreds of glycosphingolipids. Among these, ceramides, glycosphingolipids, and S1P play important roles in the atherogenic processes. The atherosclerotic plaque consists of higher amounts of ceramide, glycosphingolipids, and sphingomyelin. The inhibition of the de novo ceramide biosynthesis reduces the development of atherosclerosis. S1P regulates atherogenesis via binding to the S1P receptor (S1PR). Among the five S1PRs (S1PR1-5), S1PR1 and S1PR3 mainly exert anti-atherosclerotic properties. This review mainly focuses on the effects of ceramide and S1P via the S1PR in the development of atherosclerosis. Moreover, it discusses the recent findings and potential therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Jae-Hwi Song
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Kyung-Ho Park
- Department of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| |
Collapse
|
4
|
Sasaki N, Toyoda M. Vascular Diseases and Gangliosides. Int J Mol Sci 2019; 20:ijms20246362. [PMID: 31861196 PMCID: PMC6941100 DOI: 10.3390/ijms20246362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Vascular diseases, such as myocardial infarction and cerebral infarction, are most commonly caused by atherosclerosis, one of the leading causes of death worldwide. Risk factors for atherosclerosis include lifestyle and aging. It has been reported that lifespan could be extended in mice by targeting senescent cells, which led to the suppression of aging-related diseases, such as vascular diseases. However, the molecular mechanisms underlying the contribution of aging to vascular diseases are still not well understood. Several types of cells, such as vascular (endothelial cell), vascular-associated (smooth muscle cell and fibroblast) and inflammatory cells, are involved in plaque formation, plaque rupture and thrombus formation, which result in atherosclerosis. Gangliosides, a group of glycosphingolipids, are expressed on the surface of vascular, vascular-associated and inflammatory cells, where they play functional roles. Clarifying the role of gangliosides in atherosclerosis and their relationship with aging is fundamental to develop novel prevention and treatment methods for vascular diseases based on targeting gangliosides. In this review, we highlight the involvement and possible contribution of gangliosides to vascular diseases and further discuss their relationship with aging.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Correspondence: (N.S.); (M.T.); Tel.: +81-3-3964-3241 (N.S.); +81-3-3964-4421 (M.T.)
| | - Masashi Toyoda
- Correspondence: (N.S.); (M.T.); Tel.: +81-3-3964-3241 (N.S.); +81-3-3964-4421 (M.T.)
| |
Collapse
|
5
|
Ao M, Wang K, Zhou X, Chen G, Zhou Y, Wei B, Shao W, Huang J, Liao H, Wang Z, Sun Y, Zeng S, Chen Y. Exogenous GM3 ganglioside inhibits atherosclerosis via multiple steps: A potential atheroprotective drug. Pharmacol Res 2019; 148:104445. [PMID: 31526872 DOI: 10.1016/j.phrs.2019.104445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is one of the leading causes of morbidity and mortality worldwide. A significant increase in ganglioside GM3 content generally happens in atherosclerotic plaques causing a GM3-enriched microenvironment. It remains unclear whether the GM3-enriched microenvironment influences atherogenesis. This study sought to answer the question by investigating exogenous GM3 effects on multiple steps involved in atherogenesis. First, the physicochemical properties of native low-density lipoprotein (LDL) and LDL enriched with exogenous GM3 (GM3-LDL) were characterized by dynamic laser scattering, atomic force microscopy, and agarose gel electrophoresis. Then, electrophoretic mobility, conjugated diene and malondialdehyde production, and amino group blockage of GM3-LDL/LDL were measured to determine LDL oxidation degrees and cellular recognition/internalization of GM3-LDL/GM3-oxLDL were detected via confocal microscopy and flow cytometry. Subsequently, influences of exogenous GM3 addition on the monocyte-adhering ability of endothelial cells and on lipid deposition in macrophages were investigated. Finally, exogenous GM3 effect on atherogenesis was evaluated using apoE-/- mice fed a high-fat diet. We found that exogenous GM3 addition increased the size, charge, and stability of LDL particles, reduced LDL susceptibility to oxidation and its cellular recognition/internalization, impaired the monocyte-adhering ability of endothelial cells and lipid deposition in macrophages. Moreover, exogenous GM3 treatment also significantly decreased blood lipid levels and atherosclerotic lesion areas in atherosclerotic mice. The data imply that exogenous GM3 had an inhibitory effect on atherogenesis, suggesting a protective role of a GM3-enriched microenvironment in atherosclerotic plaques and implying a possibility of exogenous GM3 as an anti-atherosclerotic drug.
Collapse
Affiliation(s)
- Meiying Ao
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China; School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330025, PR China
| | - Kun Wang
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Xing Zhou
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Guo Chen
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yun Zhou
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Bo Wei
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenxiang Shao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330025, PR China
| | - Jie Huang
- Jiujiang Third People's Hospital, Jiujiang, Jiangxi 332000, PR China
| | - Huanhuan Liao
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhexuan Wang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yanan Sun
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Sufen Zeng
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330025, PR China
| | - Yong Chen
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, PR China; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
6
|
Wang H, Zong Q, Wang S, Zhao C, Wu S, Bao W. Genome-Wide DNA Methylome and Transcriptome Analysis of Porcine Intestinal Epithelial Cells upon Deoxynivalenol Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6423-6431. [PMID: 31013075 DOI: 10.1021/acs.jafc.9b00613] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deoxynivalenol (DON) is a type of mycotoxin that is disruptive to intestinal and immune systems. To better understand the molecular effects of DON exposure, we performed genome-wide comparisons of DNA methylation and gene expression from porcine intestinal epithelial cell IPEC-J2 upon DON exposure using reduced representation bisulfite sequencing and RNA-seq technologies. We characterized the methylation pattern changes and found 3030 differentially methylated regions. Moreover, 3226 genes showing differential expression were enriched in pathways of protein and nucleic acid synthesis and ribosome biogenesis. Integrative analysis identified 29 genes showing inverse correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon DON exposure. Our data provided new insights into epigenetic and transcriptomic alterations of intestinal epithelial cells upon DON exposure and may advance the identification of biomarkers and drug targets for predicting and controlling the toxic effects of this common mycotoxin.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Qiufang Zong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Shiqin Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Chengxiang Zhao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| |
Collapse
|
7
|
Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 2019; 10:90. [PMID: 30761148 PMCID: PMC6361815 DOI: 10.3389/fimmu.2019.00090] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Wang D, Ozhegov E, Wang L, Zhou A, Nie H, Li Y, Sun XL. Sialylation and desialylation dynamics of monocytes upon differentiation and polarization to macrophages. Glycoconj J 2016; 33:725-33. [DOI: 10.1007/s10719-016-9664-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/28/2016] [Indexed: 12/31/2022]
|
9
|
Expression of leukocyte adhesion-related glycosyltransferase genes in acute coronary syndrome patients. Inflamm Res 2014; 63:629-36. [PMID: 24748045 DOI: 10.1007/s00011-014-0735-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION Acute coronary syndrome (ACS) is caused by destabilization and rupture of atherosclerotic plaque in the coronary artery via mechanisms affecting leukocyte signaling, rolling, adhesion, extravasation and inflammation-promoting factors. The majority of cellular communication takes place on the membrane surface that is covered with glycoproteins and glycolipids synthesized by glycosyltransferases. The aim of this study was to determine the mRNA expression of leukocyte adhesion-related glycosyltransferases in patients during the onset and the chronic phase of ACS and to compare the expression with matching subjects without coronary disease. SUBJECTS AND METHODS The study included 26 ACS patients and 26 ACS-free matched-pair controls. Blood samples were collected at the time of hospital admittance and 8 days later. Expression analysis of six fucosyltransferases and six sialyltransferases was performed by a real-time polymerase chain reaction. RESULTS At the time of admittance ACS subjects had lower expression levels of FUT4, ST6GalNac4, ST6Gal1 and GM3 synthase (p < 0.05) than the control subjects, and moreover, after 8 days down-regulation of FUT7 and ST6GalNac3 was also observed (p < 0.05). When compared to the initial gene expression, after treatment and stabilization of ACS subjects, FUT7, ST6GalNac2 and ST6GalNac3 were down-regulated, whereas ST6GalNac1 was up-regulated. Expression levels of FUT7, ST6GalNac1, ST6GalNac2 and ST6GalNac3 were predicted by several drugs and medical history. CONCLUSION Expression of glycosyltransferase genes differs in ACS and control subjects. During the course of the ACS study we established further changes in gene expression levels. Medical history was predictive of gene expression levels while drugs were shown to modulate expression levels.
Collapse
|
10
|
Gracheva E, Samovilova N, Golovanova N, Piksina G, Shishkina V, Prokazova N. Activation of ganglioside GM3 biosynthesis in human blood mononuclear cells in atherosclerosis. ACTA ACUST UNITED AC 2013; 59:459-68. [DOI: 10.18097/pbmc20135904459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using blood monocytes and lymphocytes from atherosclerotic patients and healthy subjects we have investigated activity of GM3 synthase, cellular levels of ganglioside GM3 and its role in monocyte adhesion to cultured human umbilical vein endothelial cells (HUVEC). The results showed that activity of GM3 synthase and cellular levels of ganglioside GM3 in blood mononuclear cells from atherosclerotic patients were several-fold higher than those from healthy subjects. In monocytes the activity of GM3 synthase was one an order of magnitude higher than in lymphocytes from both groups studied; this suggests the major contribution of monocytes to enhanced biosynthesis and levels of GM3 in mononuclear cells in atherosclerosis. Enrichment of monocytes from healthy subjects with ganglioside GM3 by incubation in medium containing this ganglioside increased adherence of these monocytes to HUVEC up to the values typical for monocytes from atherosclerotic patients. In addition, an increase in CD11b integrin expression was observed that was comparable to that seen in lipopolysaccharide-activated monocytes. It is suggested that in atherosclerosis the enhanced cellular levels of GM3 in monocytes and lymphocytes may be an important element of cell activation that facilitates their adhesion to endothelial cells and penetration into intima.
Collapse
Affiliation(s)
- E.V. Gracheva
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - N.N. Samovilova
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - N.K. Golovanova
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - G.F. Piksina
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - V.S. Shishkina
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| | - N.V. Prokazova
- Research Institute of Experimental Cardiology, Cardiology Research Center of the Ministry of Public Health and Social Development
| |
Collapse
|