1
|
Low level expression of human telomerase reverse transcriptase predicts cancer-related death and progression in embryonal carcinoma. J Cancer Res Clin Oncol 2020; 146:2753-2775. [PMID: 32681293 DOI: 10.1007/s00432-020-03319-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION hTERT (human telomerase reverse transcriptase) is a catalytic subunit of the enzyme telomerase and has a role in cell proliferation, cellular senescence, and human aging. MATERIALS AND METHODS The purpose of this study was to evaluate the expression and significance of hTERT protein expression as a prognostic marker in different histological subtypes of testicular germ cell tumors (TGCTs), including 46 embryonal carcinomas, 46 yolk sac tumors, 38 teratomas, 84 seminomas as well as two main subtypes of seminomas and non-seminomas using tissue microarray (TMA) technique. RESULTS The results showed that there is a statistically significance difference between the expression of hTERT and various histological subtypes of TGCTs (P < 0.001). In embryonal carcinoma, low level expression of hTERT protein was significantly associated with advanced pT stage (P = 0.023) as well as tunica vaginalis invasion (P = 0.043). Moreover, low level expression of hTERT protein was found to be a significant predictor of worse DSS (log rank: P = 0.011) and PFS (log rank: P = 0.011) in the univariate analysis. Additionally, significant differences were observed (P =0.021, P =0.018) with 5-year survival rates for DSS and PFS of 66% and 70% for moderate as compared to 97% and 97% for high hTERT protein expression, respectively. CONCLUSION We showed that hTERT protein expression was associated with more aggressive tumor behavior in embryonal carcinoma patients. Also, hTERT may be a novel worse prognostic indicator of DSS or PFS, if the patients are followed up for more time periods.
Collapse
|
2
|
Saeednejad Zanjani L, Madjd Z, Rasti A, Asgari M, Abolhasani M, Tam KJ, Roudi R, Mælandsmo GM, Fodstad Ø, Andersson Y. Spheroid-Derived Cells From Renal Adenocarcinoma Have Low Telomerase Activity and High Stem-Like and Invasive Characteristics. Front Oncol 2019; 9:1302. [PMID: 31921617 PMCID: PMC6915099 DOI: 10.3389/fonc.2019.01302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a theorized small subpopulation of cells within tumors thought to be responsible for metastasis, tumor development, disease progression, treatment-resistance, and recurrence. The identification, isolation, and biological characterization of CSCs may therefore facilitate the development of efficient therapeutic strategies targeting CSCs. This study aims to compare the biology and telomerase activity of CSCs to parental cells (PCs) in renal cancer. Renal CSCs were enriched from the ACHN cell line using a sphere culture system. Spheroid-derived cells (SDCs) and their adherent counterparts were compared with respect to their colony and sphere formation, expression of putative CSC markers, tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, and invasiveness. The expression of genes associated with CSCs, stemness, EMT, apoptosis, and ABC transporters was also compared between the two populations using quantitative real-time PCR (qRT-PCR). Finally, telomerase activity, hTERT expression, and sensitivity to MST-312, a telomerase inhibitor, was investigated between the two populations. We demonstrated that a subpopulation of ACHN cells was capable of growing as spheroids with many properties similar to CSCs, including higher clonogenicity, superior colony- and sphere-forming ability, and stronger tumorigenicity and invasiveness. In addition, SDCs demonstrated a higher expression of markers for CSCs, stemness, EMT, apoptosis, and ABC transporter genes compared to PCs. The expression of hTERT and telomerase activity in SDCs was significantly lower than PCs; however, the SDC population was more sensitive to MST-312 compared to PCs. These findings indicate that the SDC population exhibits stem-like potential and invasive characteristics. Moreover, the reduced expression of hTERT and telomerase activity in SDCs demonstrated that the expressions of hTERT and telomerase activity are not always higher in CSCs. Our results also showed that MST-312 treatment inhibited SDCs more strongly than PCs and may therefore be useful as a complementary targeted therapy against renal CSCs in the future.
Collapse
Affiliation(s)
- Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Urologic Sciences, Vancouver Prostate Center, University of British Columbia, Vancouver, BC, Canada
| | - Arezoo Rasti
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Basic Sciences/Medical Surgical Nursing, Faculty of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kevin J Tam
- Department of Urologic Sciences, Vancouver Prostate Center, University of British Columbia, Vancouver, BC, Canada
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Yvonne Andersson
- Department of Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
3
|
Berardinelli F, Tanori M, Muoio D, Buccarelli M, di Masi A, Leone S, Ricci-Vitiani L, Pallini R, Mancuso M, Antoccia A. G-quadruplex ligand RHPS4 radiosensitizes glioblastoma xenograft in vivo through a differential targeting of bulky differentiated- and stem-cancer cells. J Exp Clin Cancer Res 2019; 38:311. [PMID: 31311580 PMCID: PMC6636127 DOI: 10.1186/s13046-019-1293-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastoma is the most aggressive and most lethal primary brain tumor in the adulthood. Current standard therapies are not curative and novel therapeutic options are urgently required. Present knowledge suggests that the continued glioblastoma growth and recurrence is determined by glioblastoma stem-like cells (GSCs), which display self-renewal, tumorigenic potential, and increased radio- and chemo-resistance. The G-quadruplex ligand RHPS4 displays in vitro radiosensitizing effect in GBM radioresistant cells through the targeting and dysfunctionalization of telomeres but RHPS4 and Ionizing Radiation (IR) combined treatment efficacy in vivo has not been explored so far. METHODS RHPS4 and IR combined effects were tested in vivo in a heterotopic mice xenograft model and in vitro in stem-like cells derived from U251MG and from four GBM patients. Cell growth assays, cytogenetic analysis, immunoblotting, gene expression and cytofluorimetric analysis were performed in order to characterize the response of differentiated and stem-like cells to RHPS4 and IR in single and combined treatments. RESULTS RHPS4 administration and IR exposure is very effective in blocking tumor growth in vivo up to 65 days. The tumor volume reduction and the long-term tumor control suggested the targeting of the stem cell compartment. Interestingly, RHPS4 treatment was able to strongly reduce cell proliferation in GSCs but, unexpectedly, did not synergize with IR. Lack of radiosensitization was supported by the GSCs telomeric-resistance observed as the total absence of telomere-involving chromosomal aberrations. Remarkably, RHPS4 treatment determined a strong reduction of CHK1 and RAD51 proteins and transcript levels suggesting that the inhibition of GSCs growth is determined by the impairment of the replication stress (RS) response and DNA repair. CONCLUSIONS We propose that the potent antiproliferative effect of RHPS4 in GSCs is not determined by telomeric dysfunction but is achieved by the induction of RS and by the concomitant depletion of CHK1 and RAD51, leading to DNA damage and cell death. These data open to novel therapeutic options for the targeting of GSCs, indicating that the combined inhibition of cell-cycle checkpoints and DNA repair proteins provides the most effective means to overcome resistance of GSC to genotoxic insults.
Collapse
Affiliation(s)
| | - M. Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - D. Muoio
- Department of Science, University Roma Tre, Rome, Italy
| | - M. Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - A. di Masi
- Department of Science, University Roma Tre, Rome, Italy
| | - S. Leone
- Department of Science, University Roma Tre, Rome, Italy
| | - L. Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - R. Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - M. Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A. Antoccia
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
4
|
Koka P, Mundre RS, Rangarajan R, Chandramohan Y, Subramanian RK, Dhanasekaran A. Uncoupling Warburg effect and stemness in CD133 +ve cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia. Mol Biol Rep 2018; 45:1653-1662. [PMID: 30128626 DOI: 10.1007/s11033-018-4309-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) which are known to be residing deep inside the core of the tumor in its hypoxia niche is responsible for relapse of cancers. Owing to this hypoxic niche, the residing CSCs simultaneously fuel their stemness, cancerous and drug resistance properties. Attributes of CSCs are still not properly understood in its hypoxia niche. Addressing this, we sorted CSCs from Saos-2 (osteosarcoma) cell line using CD133 antibody. The CD133+ve CSCs exhibited quiescent cell proliferation in DNA doubling, Ca2+ signaling and cell cycle analysis. CD133+ve CSCs exhibited increased production of ATP and lactate dehydrogenase (LDH) activity under hypoxia. CD133+ve cells exhibited decreased glucose uptake compared to ATP levels under hypoxia. Moreover, there was only negligible LDH activity in CD133+ve cells under normoxia which do not rely on Warburg effect. Stemness markers (such as c-Myc, SOX2, Oct4 and TERT), metastasis marker (CD44) and drug resistance marker (ABCG2) were highly expressed in CD133+ve cells. In summary, both CD133+ve/-ve cells of Saos-2 (osteosarcoma) cell line did not exhibit Warburg effect under normoxic condition. Moreover, this significantly indicates an uncoupling between stemness and Warburg effect in CD133+ve. This work provides a novel insight into the metabolic and functional features of CSCs in a hypoxic environment which could open new avenues for therapeutic strategies aimed to target CSCs.
Collapse
Affiliation(s)
- Pavani Koka
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | | | - Rohini Rangarajan
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Yamini Chandramohan
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | | | | |
Collapse
|
5
|
Investigation into the potential for hypoxic interior of neoplasms to enhance HSPA expression in glioma. Mol Cell Biochem 2014; 394:53-8. [PMID: 24833466 DOI: 10.1007/s11010-014-2080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/03/2014] [Indexed: 01/11/2023]
Abstract
Production of heat shock protein 70 (HSP70/HSPA) is induced by a wide range of cellular stress conditions, such as cancer and hypoxia. This study investigated the level of HSPA gene expression in human cell lines exposed to hypoxic conditions. Three human glioma cell lines were selected for this study, each representing different types of glioma (astrocytoma, oligodendroglioma and glioblastoma), with a normal human astrocyte cell line used as a control. HSPA RNA transcripts and proteins were examined in these samples using qRT-PCR, immunofluorescence and flow cytometry techniques. The average HSPA mRNA copy numbers detected in three glioma cell lines were approximately sixfold higher than in a normal astrocyte cell line. The expression of HSPA was induced in normal cell lines immediately after exposure to hypoxia with 33% of cells exhibiting expression. However, the effects of hypoxia on gene expression were marginal in glioma cells, due to the already increased levels of HSPA with both pre- and post-hypoxia samples showing expression in approximately 90% of cells. These results show that whilst the stress caused by both cancer and hypoxia induce HSPA expression the underlying imprint of tumourgenesis leads to sustained expression.
Collapse
|
6
|
Telomerase as a "stemness" enzyme. SCIENCE CHINA-LIFE SCIENCES 2014; 57:564-70. [PMID: 24829107 DOI: 10.1007/s11427-014-4666-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/06/2014] [Indexed: 12/20/2022]
Abstract
Pluripotent or multipotent stem cells are involved in development and tissue homeostasis; they have the ability to self-renew and differentiate into various types of functional cells. To maintain these properties, stem cells must undergo sustained or unlimited proliferation that requires the stabilization of telomeres, which are essential for chromosome end protection. Telomerase, an RNA-dependent DNA polymerase, synthesizes telomeric DNA. Through the lengthening of telomeres the lifespans of cells are extended, or indefinite proliferation is conferred; this is intimately associated with stem cell phenotype. This review highlights our current understanding of telomerase as a "stemness" enzyme and discusses the underlying implications.
Collapse
|
7
|
Meng E, Taylor B, Ray A, Shevde LA, Rocconi RP. Targeted inhibition of telomerase activity combined with chemotherapy demonstrates synergy in eliminating ovarian cancer spheroid-forming cells. Gynecol Oncol 2011; 124:598-605. [PMID: 22115853 DOI: 10.1016/j.ygyno.2011.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/04/2011] [Accepted: 11/12/2011] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Telomerase activity (TA) is often used as a molecular marker for cancer aggressiveness. Our objectives were to determine the TA in ovarian cancer cell lines and the effectiveness of targeting telomerase for cancer therapy. METHODS Ovarian cancer cell lines of various histologic subtypes were chosen to correspond to decreasing levels of clinical aggressiveness. Cells were grown in non-adherent growth conditions to form spheroid-forming cells (SFC). Telomerase activity was quantified using the TRAPeze RT Telomerase Detection Kit and confirmed with luciferase reporter plasmid containing promoter of human telomerase reverse transcriptase (hTERT). Cell proliferation survival assays were performed after treatment with a small molecule telomerase inhibitor BIBR1532 both with and without multiple chemotherapeutic agents. RESULTS Compared to monolayer, TA from SFC correlated to the innate clinical aggressiveness of ovarian cancer cell lines ES2, SKOV3, and TOV112D. Treatment with BIBR1532 resulted in up to a 12-fold decrease in TA compared to controls. SFCs were significantly more resistant to BIBR1532 compared to monolayer cell lines; however, it showed reasonable efficacy at 100 uM. In combination assays, the addition of BIBR1532 to carboplatin yielded the most favorable results in regards to synergy in all three cell lines evaluated. CONCLUSIONS Telomerase activity appears to correlate to the clinical aggressiveness seen in histologic subtypes of ovarian cancer. BIBR1532 demonstrated significant inhibition of TA as well as reasonable efficacy as a single agent. Inhibition of telomerase with BIBR1532 in combination with carboplatin demonstrated a more than additive effect in-vitro and could represent a novel targeted therapy for ovarian cancer.
Collapse
Affiliation(s)
- Erhong Meng
- University of South Alabama, Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | | | | | | |
Collapse
|
8
|
Zhu YZ, Fu D, Liu LL, Ma YS, Shen XZ, Chen XM. A high-throughput two-dimensional screening technique for cellular recognition and localization in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2011; 19:2455-2460. [DOI: 10.11569/wcjd.v19.i23.2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a novel high-throughput two-dimensional screening technique for cellular recognition and localization in hepatocellular carcinoma (HCC).
METHODS: HCC specimen was collected from a patient who underwent radical resection. The paraffin-embedded specimen was serially sectioned at a thickness of 1 μm. Five serial sections were used for staining: one for H&E staining and the other four for immunofluorescence staining for detecting eight reported liver cancer stem cell (LCSC) markers. Fluorescein isothiocyanate (FITC) and tetramethyl rhodamine isothiocyanate (rhodamine) were used for fluorescent imaging for double staining. The sections were counterstained with Hoechst33342 to demonstrate the nuclei for cellular localization. Fluorescence microscopy was used to detect the fluorescence intensity and localization.
RESULTS: We identified the valid number of cells in a visual field (1 × 100) of microscopy and delineated the merged cell map. The results showed that 8 LCSCs biomarkers could be detected in 2 772 valid cells. The expression levels of biomarkers were different in these cells and a single valid cell could express 0-8 biomarkers. No biomarkers could be detected in 2 453 cells (88.5%).
CONCLUSION: A high-throughput two-dimensional screening technique for cellular recognition and localization has been successfully developed and can be used to detect the expression of two or more LCSC markers in one liver cancer cell.
Collapse
|
9
|
Histone deacetylase inhibition as an anticancer telomerase-targeting strategy. Int J Cancer 2011; 129:2765-74. [DOI: 10.1002/ijc.26241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/30/2011] [Indexed: 01/14/2023]
|
10
|
Silvestre DC, Pineda JR, Hoffschir F, Studler JM, Mouthon MA, Pflumio F, Junier MP, Chneiweiss H, Boussin FD. Alternative lengthening of telomeres in human glioma stem cells. Stem Cells 2011; 29:440-51. [PMID: 21425407 DOI: 10.1002/stem.600] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer stem cells are increasingly recognized as major therapeutic targets. We report here the isolation of glioma stem cells (GSCs) maintaining telomere length through a telomerase-independent mechanism known as alternative lengthening of telomeres (ALTs). TG20 cells were isolated from a glioblastoma multiforme, which had the ALT phenotype. They have no detectable telomerase activity and extremely long and heterogeneous telomeres colocalizing with promyelocytic leukemia bodies. The cancer stem cell potential of TG20 cells was confirmed based on their expression of neural stem cell markers, their capacity of in vitro long-term proliferation and to form intracranial tumors in immune-deficient mice. Interestingly, we found that both in vitro and in vivo TG20 cells were significantly more resistant to ionizing radiation than GSCs with telomerase activity. Analysis of DNA damage foci, DNA double-strand breaks repair, and chromosome instability suggest that radiation resistance was related to interference of ALT pathway with DNA damage response. Therefore, our data show for the first time that the ALT pathway can confer to cancer stem cells the capacity to sustain long-term proliferation as telomerase activity and importantly may also affect treatment efficiency. TG20 cells are thus the first cellular model of GSCs displaying ALT and should prove to be useful for the development of specific treatment strategies.
Collapse
Affiliation(s)
- David C Silvestre
- Laboratoire de RadioPathologie, Institut de Radiobiologie Cellulaire et Moléculaire, CEA, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Floor S, van Staveren WCG, Larsimont D, Dumont JE, Maenhaut C. Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations. Oncogene 2011; 30:4609-21. [DOI: 10.1038/onc.2011.184] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Frosina G. Frontiers in targeting glioma stem cells. Eur J Cancer 2010; 47:496-507. [PMID: 21185169 DOI: 10.1016/j.ejca.2010.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 02/08/2023]
Abstract
Patients with glioblastoma multiforme (GBM - WHO grade IV) seldom recover. This is due to the infiltrative nature of these tumours and the presence of cellular populations with ability to escape therapies and drive tumour recurrence and progression. In some cases, these resistant cells exhibit stem properties [glioma stem cells (GSC)]. This article aims at discussing relevant issues on GSC resistance to current therapies and outlines possible and promising avenues in regard to novel therapeutic strategies, such as pharmacological, immunological and viral interventions.
Collapse
Affiliation(s)
- Guido Frosina
- Molecular Mutagenesis and DNA Repair Unit, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, Genoa, Italy.
| |
Collapse
|
13
|
Joseph I, Tressler R, Bassett E, Harley C, Buseman CM, Pattamatta P, Wright WE, Shay JW, Go NF. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines. Cancer Res 2010; 70:9494-504. [PMID: 21062983 DOI: 10.1158/0008-5472.can-10-0233] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after <4 weeks of treatment. In vitro treatment of PANC1 cells showed reduced tumor engraftment in nude mice, concomitant with a reduction in the CSC levels. Differences between telomerase activity expression levels or telomere length of CSCs and bulk tumor cells in these cell lines did not correlate with the increased sensitivity of CSCs to imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy.
Collapse
|
14
|
Vangipuram SD, Wang ZJ, Lyman WD. Resistance of stem-like cells from neuroblastoma cell lines to commonly used chemotherapeutic agents. Pediatr Blood Cancer 2010; 54:361-8. [PMID: 19927294 DOI: 10.1002/pbc.22351] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cancer stem cell theory suggests that the presence of tumor initiating stem-like cells in cancers may be responsible for cancer progression and relapse. CD133 cell surface maker expression has been used to identify stem-like cells in cancer cell lines. Our goal was to identify such cells in neuroblastoma cell lines and to study the cytotoxicity of common anticancer drugs for those cells. MATERIALS AND METHODS CD133+ cells from SK-N-SH and SK-N-BE cell lines were isolated using magnetic microbeads. Cytotoxicity of four anticancer drugs was studied on CD133+ and CD133- populations. The percentage of live, apoptotic, and dead cells in each population after drug treatment was estimated by MTT and PI/Annexin-binding assays. Western blot analyses were used to identify differences in the expression of kinases. RESULTS Eight to 10% of SK-N-SH and 3-5% of SK-N-BE cells were CD133+. These cells were more resistant than CD133- cells to all four chemotherapeutic agents tested in the MTT assay. Decreased apoptosis was observed in CD133+ cells compared to CD133- cells by PI/Annexin V-binding assay. Western blot analysis showed that CD133+ cells expressed less MKP-1. Phosphorylated forms of both ERK and P-38 kinases were expressed at higher levels in CD133+ cells than in CD133- cells. CONCLUSIONS This study suggests that CD133+ cells are more resistant to anticancer drugs than CD133- cells. Differences in the expression and phosphorylation of kinases could be partially responsible for this difference. Targeting CD133-expressing cells could be a strategy to develop more effective treatments for neuroblastoma.
Collapse
Affiliation(s)
- Sharada D Vangipuram
- The Carman and Ann Adams Department of Pediatrics, Children's Research Center of Michigan, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit,MI 48201, USA.
| | | | | |
Collapse
|