1
|
Karmakar S, Chatterjee M, Basu M, Ghosh MK. CK2: The master regulator in tumor immune-microenvironment - A crucial target in oncotherapy. Eur J Pharmacol 2025; 994:177376. [PMID: 39952582 DOI: 10.1016/j.ejphar.2025.177376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
A constitutively active serine/threonine kinase, casein kinase 2 (CK2) is involved in several physiological functions, such as DNA repair, apoptosis, and cell cycle control. New research emphasizes how critical CK2 is to the immune system's dysregulation in the tumor immune-microenvironment (TIME). The inhibition of immunological responses, including the downregulation of immune effector cells and the elevation of immunosuppressive proteins that aid in the development of tumor and immune evasion, has been linked to CK2 overexpression. CK2 maintains an immunosuppressive milieu that impedes anti-tumor immunity by encouraging the expressions and activities of immune checkpoint markers, regulating cytokines release, and boosting immune-suppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) to maintain immune evasion. It is a promising target for cancer treatment due to its complex role in immune regulation and oncogenic pathways. In this study, we address the therapeutic perspectives of targeting CK2 in oncotherapy and investigate the mechanisms by which it controls immunological responses in the TME. This review, comprehending the function of CK2 in immune suppression can facilitate the creation of innovative treatment approaches aimed at augmenting anti-tumor immunity and enhancing immunotherapy effectiveness.
Collapse
Affiliation(s)
- Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mouli Chatterjee
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Dakshin Barasat, WB, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
2
|
Ling Y, Kuang Y, Chen LL, Lao WF, Zhu YR, Wang LQ, Wang D. A novel RON splice variant lacking exon 2 activates the PI3K/AKT pathway via PTEN phosphorylation in colorectal carcinoma cells. Oncotarget 2018; 8:39101-39116. [PMID: 28388571 PMCID: PMC5503598 DOI: 10.18632/oncotarget.16603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
Abnormal expression of the Recepteur d'Origine Nantais (RON) receptor tyrosine kinase is accompanied by the generation of multiple splice or truncated variants, which mediate many critical cellular functions that contribute to tumor progression and metastasis. Here, we report a new RON splice variant in the human colorectal cancer (CRC) cell line HT29. This variant is a 165 kda protein generated by alternative pre-mRNA splicing that eliminates exon 2, causing an in-frame deletion of 63 amino acids in the extracellular domain of the RON β chain. The deleted transcript was a single chain expressed in the intracellular compartment. Although it lacked tyrosine phosphorylation activity, the RONΔ165E2 variant could phosphorylate phosphatase and tensin homolog (PTEN), thereby activating the PI3K/AKT pathway. In addition, in vitro and in vivo experiments showed that the RONΔ165E2 promoted cell migration and tumor growth. Finally, in an investigation of 67 clinical CRC samples, the variant was highly expressed in about 58% of the samples, and was positively correlated with the invasive depth of the tumor (P < 0.05). These results demonstrate that the novel RONΔ165E2 variant promoted tumor progression while activating the PI3K/AKT pathway via PTEN phosphorylation.
Collapse
Affiliation(s)
- Yu Ling
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yeye Kuang
- Biomedical Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lin-Lin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Wei-Feng Lao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yao-Ru Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Le-Qi Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| |
Collapse
|
3
|
Gingipalli L, Block MH, Bao L, Cooke E, Dakin LA, Denz CR, Ferguson AD, Johannes JW, Larsen NA, Lyne PD, Pontz TW, Wang T, Wu X, Wu A, Zhang HJ, Zheng X, Dowling JE, Lamb ML. Discovery of 2,6-disubstituted pyrazine derivatives as inhibitors of CK2 and PIM kinases. Bioorg Med Chem Lett 2018; 28:1336-1341. [PMID: 29559278 DOI: 10.1016/j.bmcl.2018.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
Abstract
The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).
Collapse
Affiliation(s)
- Lakshmaiah Gingipalli
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA.
| | - Michael H Block
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Larry Bao
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Emma Cooke
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Les A Dakin
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Christopher R Denz
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Andrew D Ferguson
- Structure and Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Jeffrey W Johannes
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Nicholas A Larsen
- Structure and Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Paul D Lyne
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Timothy W Pontz
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Tao Wang
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Xiaoyun Wu
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Allan Wu
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Hai-Jun Zhang
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Xiaolan Zheng
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - James E Dowling
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Michelle L Lamb
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA; 35 Gatehouse Drive, Waltham, MA 02451, USA
| |
Collapse
|
4
|
Li Q, Li K, Yang T, Zhang S, Zhou Y, Li Z, Xiong J, Zhou F, Zhou X, Liu L, Meng R, Wu G. Association of protein kinase CK2 inhibition with cellular radiosensitivity of non-small cell lung cancer. Sci Rep 2017; 7:16134. [PMID: 29170453 PMCID: PMC5700935 DOI: 10.1038/s41598-017-16012-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023] Open
Abstract
Protein kinase CK2 is a highly conserved protein Ser/Thr protein kinase and plays important roles in cell proliferation, protein translation and cell survival. This study investigated the possibility of using CK2 inhibition as a new approach for increasing the efficacy of radiotherapy in non-small cell lung cancer (NSCLC) and its underlying mechanisms. Kinase inhibition of CK2 was attempted either by using the specific CK2 inhibitor, Quinalizarin or by applying siRNA interference technology to silence the expression of the catalytic subunit of CK2 in A549 and H460 cells. The results showed that CK2α knockdown or Quinalizarin significantly enhanced the radiosensitivity of various NSCLC cells. The notable findings we observed after exposure to both CK2 inhibition and ionizing radiation (IR) were a prolonged delay in radiation-induced DNA double-strand breaks (DSB) repair, robust G2/M checkpoint arrest and increased apoptosis. In vivo studies further demonstrated that compared with each treatment alone, CK2 inhibition combined with IR reduced tumor growth in the H460 cell xenograft model. In conclusion, CK2 is a promising target for the enhancement of radiosensitivity in NSCLC.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianyang Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinrong Xiong
- Oncology Department, The Chinese People's Liberation Army 457 Hospital, Wuhan, 430012, China
| | - Fangzheng Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Li ZS, Deng CZ, Ye YL, Yao K, Guo SJ, Chen JP, Li YH, Qin ZK, Liu ZW, Wang B, Zhao Q, Chen P, Mi QW, Chen XF, Han H, Zhou FJ. More precise prediction in Chinese patients with penile squamous cell carcinoma: protein kinase CK2α catalytic subunit (CK2α) as a poor prognosticator. Oncotarget 2017; 8:51542-51550. [PMID: 28881666 PMCID: PMC5584267 DOI: 10.18632/oncotarget.17935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/21/2017] [Indexed: 01/03/2023] Open
Abstract
Purpose In this study, we assess the CK2α expression in human penile squamous cell carcinoma (SCC) and its clinical significance. Methods A total of 157 human penile SCC tissue samples were immunohistochemically analyzed. In addition, 12 human penile SCC and adjacent normal tissues were examined for CK2α protein and mRNA expression by Western blotting and real-time quantitative PCR, respectively. Survival was analyzed using the Kaplan-Meier test and the log-rank test. Multivariate Cox proportional hazard regression analysis was performed to determine the impacts of CK2α expression and the clinicopathological features on patient disease-specific survival (DSS). Likelihood ratios (LRs), Akaike information criterion (AIC) values, and concordance indexes (C-indexes) were investigated to evaluate the accuracies of the factors. Bootstrap-corrected C-indexes were used for internal validation (with sampling 1000 times). Results A significant difference in the distribution of CK2α was observed between the normal and penile carcinoma tissues (P<0.001). CK2α expression was associated with the pathological T and N stages in the penile cancer tissues (P<0.001). High CK2α expression was with significantly poorer DSS compared with low expression one (P<0.001). Western blotting and real-time quantitative PCR also confirmed that CK2α expression was increased in the penile cancer tissues. In multivariate Cox regression analysis, CK2α overexpression still was one of independent prognostic factors for penile SCC (P=0.005). The predictive accuracy of CK2α was verified by analysis of the C-indexes. Conclusion High protein kinase CK2α expression is associated with several prognostic factors and is thus a significant indicator of poor prognosis for penile cancer.
Collapse
Affiliation(s)
- Zai-Shang Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Chuang-Zhong Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Yun-Lin Ye
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Kai Yao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Sheng-Jie Guo
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Jie-Ping Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Yong-Hong Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Zi-Ke Qin
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Zhuo-Wei Liu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Bin Wang
- Department of Urology, Cancer Center of Guangzhou Medical University, Guangzhou, P. R. China
| | - Qi Zhao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,School of Life Science, Sun Yat-sen University, Guangzhou, P. R. China
| | - Peng Chen
- Department of Urology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumchi, P. R. China
| | - Qi-Wu Mi
- Department of Urology, Dong Guan People's Hospital, Guang Dong, P. R. China
| | - Xiao-Feng Chen
- Department of Urology, The First People's Hospital of Chenzhou, Chenzhou, P. R. China
| | - Hui Han
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Fang-Jian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
6
|
PAN XIAOFEN, MENG RUI, YU ZHONGHUA, MOU JINGJING, LIU SHA, SUN ZIYI, ZOU ZHENWEI, WU GANG, PENG GANG. Quinalizarin enhances radiosensitivity of nasopharyngeal carcinoma cells partially by suppressing SHP-1 expression. Int J Oncol 2016; 48:1073-84. [DOI: 10.3892/ijo.2016.3338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/22/2015] [Indexed: 11/06/2022] Open
|
7
|
He Z, Deng Y, Li W, Chen Y, Xing S, Zhao X, Ding J, Gao Y, Wang X. Overexpression of PTEN suppresses lipopolysaccharide-induced lung fibroblast proliferation, differentiation and collagen secretion through inhibition of the PI3-K-Akt-GSK3beta pathway. Cell Biosci 2014; 4:2. [PMID: 24387036 PMCID: PMC3892003 DOI: 10.1186/2045-3701-4-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Abnormal and uncontrolled proliferation of lung fibroblasts may contribute to pulmonary fibrosis. Lipopolysaccharide (LPS) can induce fibroblast proliferation and differentiation through activation of phosphoinositide3-Kinase (PI3-K) pathway. However, the detail mechanism by which LPS contributes to the development of lung fibrosis is not clearly understood. To investigate the role of phosphatase and tensin homolog (PTEN), a PI3-K pathway suppressor, on LPS-induced lung fibroblast proliferation, differentiation, collagen secretion and activation of PI3-K, we transfected PTEN overexpression lentivirus into cultured mouse lung fibroblasts with or without LPS treatment to evaluate proliferation by MTT and Flow cytometry assays. Expression of PTEN, alpha-smooth muscle actin (alpha-SMA), glycogen synthase kinase 3 beta (GSK3beta) and phosphorylation of Akt were determined by Western-blot or real-time RT-PCR assays. The PTEN phosphorylation activity was measured by a malachite green-based assay. The content of C-terminal propeptide of type I procollagen (PICP) in cell culture supernatants was examined by ELISA. Results We found that overexpression of PTEN effectively increased expression and phosphatase activity of PTEN, and concomitantly inhibited LPS-induced fibroblast proliferation, differentiation and collagen secretion. Phosphorylation of Akt and GSK3beta protein expression levels in the LPS-induced PTEN overexpression transfected cells were significantly lower than those in the LPS-induced non-transfected cells, which can be reversed by the PTEN inhibitor, bpV(phen). Conclusions Collectively, our results show that overexpression and induced phosphatase activity of PTEN inhibits LPS-induced lung fibroblast proliferation, differentiation and collagen secretion through inactivation of PI3-K-Akt-GSK3beta signaling pathways, which can be abrogated by a selective PTEN inhibitor. Thus, expression and phosphatase activity of PTEN could be a potential therapeutic target for LPS-induced pulmonary fibrosis. Compared with PTEN expression level, phosphatase activity of PTEN is more crucial in affecting lung fibroblast proliferation, differentiation and collagen secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Gao
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Road, Shanghai 200127, China.
| | | |
Collapse
|
8
|
Sun H, Xu X, Wu X, Zhang X, Liu F, Jia J, Guo X, Huang J, Jiang Z, Feng T, Chu H, Zhou Y, Zhang S, Liu Z, You Q. Discovery and design of tricyclic scaffolds as protein kinase CK2 (CK2) inhibitors through a combination of shape-based virtual screening and structure-based molecular modification. J Chem Inf Model 2013; 53:2093-102. [PMID: 23937544 DOI: 10.1021/ci400114f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein kinase CK2 (CK2), a ubiquitous serine/threonine protein kinase for hundreds of endogenous substrates, serves as an attractive anticancer target. One of its most potent inhibitors, CX-4945, has entered a phase I clinical trial. Herein we present an integrated workflow combining shape-based virtual screening for the identification of novel CK2 inhibitors. A shape-based model derived from CX-4945 was built, and the subsequent virtual screening led to the identification of several novel scaffolds with high shape similarity to that of CX-4945. Among them two tricyclic scaffolds named [1,2,4]triazolo[4,3-c]quinazolin and [1,2,4]triazolo[4,3-a]quinoxalin attracted us the most. Combining strictly chemical similarity analysis, a second-round shape-based screening was performed based on the two tricyclic scaffolds, leading to 28 derivatives. These compounds not only targeted CK2 with potent and dose-dependent activities but also showed acceptable antiproliferative effects against a series of cancer cell lines. Our workflow supplies a high efficient strategy in the identification of novel CK2 inhibitors. Compounds reported here can serve as ideal leads for further modifications.
Collapse
Affiliation(s)
- Haopeng Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huang Y, Zhou S, Xue H, Zhao Z, Wang L. [Protein kinase CK2 and human malignant tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:439-45. [PMID: 22814265 PMCID: PMC6000077 DOI: 10.3779/j.issn.1009-3419.2012.07.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yixuan Huang
- Department of Thoracic Surgery, Zhongshan Hospital-Dalian University, Dalian, China
| | | | | | | | | |
Collapse
|
10
|
Modified tetrahalogenated benzimidazoles with CK2 inhibitory activity are active against human prostate cancer cells LNCaP in vitro. Bioorg Med Chem 2012; 20:4390-6. [DOI: 10.1016/j.bmc.2012.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 12/11/2022]
|
11
|
Haddach M, Pierre F, Regan CF, Borsan C, Michaux J, Stefan E, Kerdoncuff P, Schwaebe MK, Chua PC, Siddiqui-Jain A, Macalino D, Drygin D, O’Brien SE, Rice WG, Ryckman DM. Synthesis and SAR of inhibitors of protein kinase CK2: Novel tricyclic quinoline analogs. Bioorg Med Chem Lett 2012; 22:45-8. [DOI: 10.1016/j.bmcl.2011.11.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/21/2011] [Indexed: 11/24/2022]
|
12
|
Gyenis L, Duncan JS, Turowec JP, Bretner M, Litchfield DW. Unbiased functional proteomics strategy for protein kinase inhibitor validation and identification of bona fide protein kinase substrates: application to identification of EEF1D as a substrate for CK2. J Proteome Res 2011; 10:4887-901. [PMID: 21936567 PMCID: PMC3208357 DOI: 10.1021/pr2008994] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein kinases have emerged as attractive targets for treatment of several diseases prompting large-scale phosphoproteomics studies to elucidate their cellular actions and the design of novel inhibitory compounds. Current limitations include extensive reliance on consensus predictions to derive kinase-substrate relationships from phosphoproteomics data and incomplete experimental validation of inhibitors. To overcome these limitations in the case of protein kinase CK2, we employed functional proteomics and chemical genetics to enable identification of physiological CK2 substrates and validation of CK2 inhibitors including TBB and derivatives. By 2D electrophoresis and mass spectrometry, we identified the translational elongation factor EEF1D as a protein exhibiting CK2 inhibitor-dependent decreases in phosphorylation in (32)P-labeled HeLa cells. Direct phosphorylation of EEF1D by CK2 was shown by performing CK2 assays with EEF1D -FLAG from HeLa cells. Dramatic increases in EEF1D phosphorylation following λ-phosphatase treatment and phospho- EEF1D antibody recognizing EEF1D pS162 indicated phosphorylation at the CK2 site in cells. Furthermore, phosphorylation of EEF1D in the presence of TBB or TBBz is restored using CK2 inhibitor-resistant mutants. Collectively, our results demonstrate that EEF1D is a bona fide physiological CK2 substrate for CK2 phosphorylation. Furthermore, this validation strategy could be adaptable to other protein kinases and readily combined with other phosphoproteomic methods.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, The University of Western Ontario , London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
13
|
Trembley JH, Unger GM, Korman VL, Tobolt DK, Kazimierczuk Z, Pinna LA, Kren BT, Ahmed K. Nanoencapsulated anti-CK2 small molecule drug or siRNA specifically targets malignant cancer but not benign cells. Cancer Lett 2011; 315:48-58. [PMID: 22050909 DOI: 10.1016/j.canlet.2011.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/06/2011] [Indexed: 12/19/2022]
Abstract
CK2, a pleiotropic Ser/Thr kinase, is an important target for cancer therapy. We tested our novel tenfibgen-based nanocapsule for delivery of the inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) and an siRNA directed against both CK2α and α' catalytic subunits to prostate cancer cells. We present data on the TBG nanocapsule itself and on CK2 inhibition or downregulation in treated cells, including effects on Nuclear Factor-kappa B (NF-κB) p65. By direct comparison of two CK2-directed cargos, our data provide proof that the TBG encapsulation design for delivery of drugs specifically to cancer cells has strong potential for small molecule- and nucleic acid-based cancer therapy.
Collapse
|
14
|
Khan MS, Halagowder D, Devaraj SN. Methylated chrysin induces co-ordinated attenuation of the canonical Wnt and NF-kB signaling pathway and upregulates apoptotic gene expression in the early hepatocarcinogenesis rat model. Chem Biol Interact 2011; 193:12-21. [PMID: 21554863 DOI: 10.1016/j.cbi.2011.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 12/15/2022]
|
15
|
Dominguez I, Degano IR, Chea K, Cha J, Toselli P, Seldin DC. CK2α is essential for embryonic morphogenesis. Mol Cell Biochem 2011; 356:209-16. [PMID: 21761203 DOI: 10.1007/s11010-011-0961-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 12/11/2022]
Abstract
CK2 is a highly conserved serine-threonine kinase involved in biological processes such as embryonic development, circadian rhythms, inflammation, and cancer. Biochemical experiments have implicated CK2 in the control of several cellular processes and in the regulation of signal transduction pathways. Our laboratory is interested in characterizing the cellular, signaling, and molecular mechanisms regulated by CK2 during early embryonic development. For this purpose, animal models, including mice deficient in CK2 genes, are indispensable tools. Using CK2α gene-deficient mice, we have recently shown that CK2α is a critical regulator of mid-gestational morphogenetic processes, as CK2α deficiency results in defects in heart, brain, pharyngeal arch, tail bud, limb bud, and somite formation. Morphogenetic processes depend upon the precise coordination of essential cellular processes in which CK2 has been implicated, such as proliferation and survival. Here, we summarize the overall phenotype found in CK2α (-/- ) mice and describe our initial analysis aimed to identify the cellular processes affected in CK2α mutants.
Collapse
Affiliation(s)
- Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 2011; 356:37-43. [PMID: 21755459 DOI: 10.1007/s11010-011-0956-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
In this article we describe the preclinical characterization of 5-(3-chlorophenylamino) benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first orally available small molecule inhibitor of protein CK2 in clinical trials for cancer. CX-4945 was optimized as an ATP-competitive inhibitor of the CK2 holoenzyme (Ki = 0.38 nM). Iterative synthesis and screening of analogs, guided by molecular modeling, led to the discovery of orally available CX-4945. CK2 promotes signaling in the Akt pathway and CX-4945 suppresses the phosphorylation of Akt as well as other key downstream mediators of the pathway such as p21. CX-4945 induced apoptosis and caused cell cycle arrest in cancer cells in vitro. CX-4945 exhibited a dose-dependent antitumor activity in a xenograft model of PC3 prostate cancer model and was well tolerated. In vivo time-dependent reduction in the phosphorylation of the biomarker p21 at T145 was observed by immunohistochemistry. Inhibition of the newly validated CK2 target by CX-4945 represents a fresh therapeutic strategy for cancer.
Collapse
|
17
|
Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Mol Cell Biochem 2011; 356:107-15. [DOI: 10.1007/s11010-011-0945-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 11/25/2022]
|
18
|
McFarland TP, Sleiman NH, Yaeger DB, Cala SE. The cytosolic protein kinase CK2 phosphorylates cardiac calsequestrin in intact cells. Mol Cell Biochem 2011; 353:81-91. [PMID: 21431367 DOI: 10.1007/s11010-011-0777-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/07/2011] [Indexed: 12/01/2022]
Abstract
The luminal SR protein CSQ2 contains phosphate on roughly half of the serines found in its C-terminus. The sequence around phosphorylation sites in CSQ2 suggest that the in vivo kinase is protein kinase CK2, even though this enzyme is thought to be present only in the cytoplasm and nucleus. To test whether CSQ2 kinase is CK2, we combined approaches that reduced CK2 activity and CSQ2 phosphorylation in intact cells. Tetrabromocinnamic acid, a specific inhibitor of CK2, inhibited both the CSQ2 kinase and CK2 in parallel across a range of concentrations. In intact primary adult rat cardiomyocytes and COS cells, 24 h of drug treatment reduced phosphorylation of overexpressed CSQ2 by 75%. Down-regulation of CK2α subunits in COS cells using siRNA, produced a 90% decrease in CK2α protein levels, and CK2-silenced COS cells exhibited a twofold reduction in CSQ2 kinase activity. Phosphorylation of CSQ2 overexpressed in CK2-silenced cells was also reduced by a factor of two. These data suggested that CSQ2 in intact cells is phosphorylated by CK2, a cytosolic kinase. When phosphorylation site mutants were analyzed in COS cells, the characteristic rough endoplasmic reticulum form of the CSQ2 glycan (GlcNAc2Man9,8) underwent phosphorylation site dependent processing such that CSQ2-nonPP (Ser to Ala mutant) and CSQ2-mimPP (Ser to Glu mutant) produced apparent lower and greater levels of ER retention, respectively. Taken together, these data suggest CK2 can phosphorylate CSQ2 co-translationally at biosynthetic sites in rough ER, a process that may result in changes in its subsequent trafficking through the secretory pathway.
Collapse
Affiliation(s)
- Timothy P McFarland
- Department of Physiology, Wayne State University School of Medicine, Elliman Building, 421 East Canfield Ave., Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
19
|
Pierre F, O’Brien SE, Haddach M, Bourbon P, Schwaebe MK, Stefan E, Darjania L, Stansfield R, Ho C, Siddiqui-Jain A, Streiner N, Rice WG, Anderes K, Ryckman DM. Novel potent pyrimido[4,5-c]quinoline inhibitors of protein kinase CK2: SAR and preliminary assessment of their analgesic and anti-viral properties. Bioorg Med Chem Lett 2011; 21:1687-91. [DOI: 10.1016/j.bmcl.2011.01.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
20
|
Lambert IH, Hansen DB. Regulation of Taurine Transport Systems by Protein Kinase CK2 in Mammalian Cells. Cell Physiol Biochem 2011; 28:1099-110. [DOI: 10.1159/000335846] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2011] [Indexed: 12/28/2022] Open
|
21
|
Protein kinase CK2α subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. Eur J Cancer 2010; 47:792-801. [PMID: 21194925 DOI: 10.1016/j.ejca.2010.11.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/19/2010] [Accepted: 11/26/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND CK2α is a signalling molecule that participates in major events in solid tumour progression. The aim of this study was to evaluate the prognostic significance of the immunohistochemical expression of CK2α in breast carcinomas. METHODS Quantitative measurements of immunohistochemical expression of 33 biomarkers using high-throughput densitometry, assessed on digitised microscopic tissue micro-array images were correlated with clinical outcome in 1000 breast carcinomas using univariate and multivariate analyses. RESULTS In univariate analysis, CK2α was a significant prognostic indicator (p<0.001). Moreover, a multivariable model allowed the selection of the best combination of the 33 biomarkers to predict patients' outcome through logistic regression. A nine-marker signature highly predictive of metastatic risk, associating SHARP-2, STAT1, eIF4E, pmapKAPk-2, pAKT, caveolin, VEGF, FGF-1 and CK2α permitted to classify well 82.32% of patients (specificity 81.59%, sensitivity 92.55%, area under ROC curve 0.939). Importantly, in a node negative subset of patients an even more (86%) clinically relevant association of eleven markers was found predictive of poor outcome. CONCLUSION A strong quantitative CK2α immunohistochemical expression in breast carcinomas is individually a significant indicator of poor prognosis. Moreover, an immunohistochemical signature of 11 markers including CK2α accurately (86%) well classifies node negative patients in good and poor outcome subsets. Our results suggest that CK2α evaluation together with key downstream CK2 targets might be a useful tool to identify patients at high risk of distant metastases and that CK2 can be considered as a relevant target for potential specific therapy.
Collapse
|
22
|
Regulation of taurine homeostasis by protein kinase CK2 in mouse fibroblasts. Amino Acids 2010; 40:1091-106. [DOI: 10.1007/s00726-010-0732-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/23/2010] [Indexed: 12/26/2022]
|