1
|
Młotkowska P, Misztal T, Kowalczyk P, Marciniak E. Effect of kynurenic acid on enzymatic activity of the DNA base excision repair pathway in specific areas of the sheep brain. Sci Rep 2024; 14:15506. [PMID: 38969725 PMCID: PMC11226655 DOI: 10.1038/s41598-024-66094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Relatively low levels of antioxidant enzymes coupled with high oxygen metabolism result in the formation of numerous oxidative DNA damages in the tissues of the central nervous system. Recently, kynurenic acid (KYNA), knowns for its neuroprotective properties, has gained increasing attention in this context. Therefore, our hypothesis assumed that increased KYNA levels in the brain would positively influence mRNA expression of selected enzymes of the base excision repair pathway as well as enhance their efficiency in excising damaged nucleobases in specific areas of the sheep brain. The study was conducted on adult anestrous sheep (n = 18), in which two different doses of KYNA (20 and 100 μg/day) were infused into the third brain ventricle for three days. Molecular and biochemical analysis included the hypothalamus (preoptic and mediol-basal areas), hippocampus (CA3 field) and amygdala (central amygdaloid nucleus), dissected from the brain of sheep euthanized immediately after the last infusion. The results revealed a significant increase P < 0.001) in the relative mRNA abundance of N-methylpurine DNA glycosylase (MPG) following administration of both dose of KYNA across all examined tissues. The transcription of thymine-DNA glycosylase (TDG) increased significantly (P < 0.001) in all tissues in response to the lower KYNA dose compared to the control group. Moreover, 8-oxoguanine (8-oxoG) DNA glycosylase (OGG1) mRNA levels were also higher in both animal groups (P < 0.001). In addition, in the hypothalamus, hippocampus and amygdala, AP endonuclease 1 (APE1) mRNA expression increased under both doses of KYNA. Moreover, the both dose of KYNA significantly stimulated the efficiency of 8-oxoG excision in hypothalamus and amygdala (P < 0.05-0.001). The lower and higher doses of KYNA significantly influenced the effectiveness of εA and εC in all structures (P < 0.01-0.001). In conclusion, the favorable effect of KYNA in the brain may include the protection of genetic material in nerve and glial cells by stimulating the expression and efficiency of BER pathway enzymes.
Collapse
Affiliation(s)
- Patrycja Młotkowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110, Jabłonna, Poland.
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110, Jabłonna, Poland
| | - Paweł Kowalczyk
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110, Jabłonna, Poland
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110, Jabłonna, Poland
| |
Collapse
|
2
|
The Role of Thymine DNA Glycosylase in Transcription, Active DNA Demethylation, and Cancer. Cancers (Basel) 2022; 14:cancers14030765. [PMID: 35159032 PMCID: PMC8833622 DOI: 10.3390/cancers14030765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Thymine DNA Glycosylase (TDG) is a DNA repair protein that plays an important role in gene regulation. Recent studies have shown that TDG interacts with various transcription factors to activate target genes. TDG also functions in a pathway known as active DNA demethylation, which removes 5-mC from DNA and replaces it with unmethylated cytosine. In this review, we summarize the various functions of TDG in gene regulation as well as the physiological relevance of TDG in cancer. Abstract DNA methylation is an essential covalent modification that is required for growth and development. Once considered to be a relatively stable epigenetic mark, many studies have established that DNA methylation is dynamic. The 5-methylcytosine (5-mC) mark can be removed through active DNA demethylation in which 5-mC is converted to an unmodified cytosine through an oxidative pathway coupled to base excision repair (BER). The BER enzyme Thymine DNA Glycosylase (TDG) plays a key role in active DNA demethylation by excising intermediates of 5-mC generated by this process. TDG acts as a key player in transcriptional regulation through its interactions with various nuclear receptors and transcription factors, in addition to its involvement in classical BER and active DNA demethylation, which serve to protect the stability of the genome and epigenome, respectively. Recent animal studies have identified a connection between the loss of Tdg and the onset of tumorigenesis. In this review, we summarize the recent findings on TDG’s function as a transcriptional regulator as well as the physiological relevance of TDG and active DNA demethylation in cancer.
Collapse
|
3
|
Shimizu T, Takahashi N, Huber VJ, Asawa Y, Ueda H, Yoshimori A, Muramatsu Y, Seimiya H, Kouji H, Nakamura H, Oguri H. Design and synthesis of 14 and 15-membered macrocyclic scaffolds exhibiting inhibitory activities of hypoxia-inducible factor 1α. Bioorg Med Chem 2020; 30:115949. [PMID: 33360196 DOI: 10.1016/j.bmc.2020.115949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Inspired by the privileged molecular skeletons of 14- and 15-membered antibiotics, we adopted a relatively unexplored synthetic approach that exploits alkaloidal macrocyclic scaffolds to generate modulators of protein-protein interactions (PPIs). As mimetics of hot-spot residues in the α-helices responsible for the transcriptional regulation, three hydrophobic sidechains were displayed on each of the four distinct macrocyclic scaffolds generating diversity of their spatial arrangements. Modular assembly of the building blocks followed by ring-closing olefin metathesis reaction and subsequent hydrogenation allowed concise and divergent synthesis of scaffolds 1-4. The 14-membered alkaloidal macrocycles 2-4 demonstrated similar inhibition of hypoxia-inducible factor (HIF)-1α transcriptional activities (IC50 between 8.7 and 10 µM), and 4 demonstrated the most potent inhibition of cell proliferation in vitro (IC50 = 12 µM against HTC116 colon cancer cell line). A docking model suggested that 4 could mimic the LLxxL motif in HIF-1α, in which the three sidechains are capable of matching the spatial arrangements of the protein hot-spot residues. Unlike most of the stapled peptides, the 14-membered alkaloidal scaffold has a similar size to the α-helix backbone and does not require additional atoms to induce α-helix mimetic structure. These experimental results underscore the potential of alkaloidal macrocyclic scaffolds featuring flexibly customizable skeletal, stereochemical, substitutional, and conformational properties for the development of non-peptidyl PPI modulators targeting α-helix-forming consensus sequences responsible for the transcriptional regulation.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Norihito Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Vincent J Huber
- Oita University Institute of Advanced Medicine, Inc., 17-20 Higashi kasuga-machi, Oita-shi, Oita 870-0037, Japan
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroyuki Kouji
- Oita University Institute of Advanced Medicine, Inc., 17-20 Higashi kasuga-machi, Oita-shi, Oita 870-0037, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
5
|
Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements. Oncotarget 2016; 6:42575-89. [PMID: 26646795 PMCID: PMC4767454 DOI: 10.18632/oncotarget.6471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/25/2022] Open
Abstract
DNA methylation is an epigenetic modification that contributes to stable gene silencing by interfering with the ability of transcriptional regulators to bind to DNA. Recent findings have revealed that hormone stimulation of certain nuclear receptors induces rapid, dynamic changes in DNA methylation patterns alongside transcriptional responses at a subset of target loci, over time. However, the ability of androgen receptor (AR) to dynamically regulate gene transcription is relatively under-studied and its role in the regulation of DNA methylation patterns remains to be elucidated. Here we demonstrate in normal prostate cells that hormone stimulated AR activity results in dynamic changes in the transcription rate and DNA methylation patterns at the AR target genes, TIPARP and SGK1. Time-resolved chromatin immunoprecipitation experiments on the SGK1 locus reveals dynamic recruitment of AR and RNA Polymerase II, as well as the recruitment of proteins involved in the DNA demethylation process, TET1 and TDG. Furthermore, the presence of DNA methylation at dynamic regions inhibits protein binding and transcriptional activity of SGK1. These findings establish AR activity as a contributing factor to the dynamic regulation of DNA methylation patterns at target genes in prostate biology and infer further complexity involved in nuclear receptor mediation of transcriptional regulation.
Collapse
|
6
|
Xu X, Watt DS, Liu C. Multifaceted roles for thymine DNA glycosylase in embryonic development and human carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:82-9. [PMID: 26370152 DOI: 10.1093/abbs/gmv083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/12/2015] [Indexed: 01/03/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifunctional protein that plays important roles in DNA repair, DNA demethylation, and transcriptional regulation. These diverse functions make TDG a unique enzyme in embryonic development and carcinogenesis. This review discusses the molecular function of TDG in human cancers and the previously unrecognized value of TDG as a potential target for drug therapy.
Collapse
Affiliation(s)
- Xuehe Xu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| |
Collapse
|
7
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Zhang H, Zhu JK. Active DNA demethylation in plants and animals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2012. [PMID: 23197304 DOI: 10.1101/sqb.2012.77.014936] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders.
Collapse
Affiliation(s)
- H Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
9
|
Abstract
The base excision repair system is vital to the repair of endogenous and exogenous DNA damage. This pathway is initiated by one of several DNA glycosylases that recognizes and excises specific DNA lesions in a coordinated fashion. Methyl-CpG Domain Protein 4 (MBD4) and Thymine DNA Glycosylase (TDG) are the two major G:T glycosylases that remove thymine generated by the deamination of 5-methylcytosine. Both of these glycosylases also remove a variety of other base lesions, including G:U and preferentially act at CpG sites throughout the genome. Many have questioned the purpose of seemingly redundant glycosylases, but new information has emerged to suggest MBD4 and TDG have diverse biological functions. MBD4 has been closely linked to apoptosis, while TDG has been clearly implicated in transcriptional regulation. This article reviews all of these developments, and discusses the consequences of germline and somatic mutations that lead to non-synonymous amino acid substitutions on MBD4 and TDG protein function. In addition, we report the finding of alternatively spliced variants of MBD4 and TDG and the results of functional studies of a tumor-associated variant of MBD4.
Collapse
|
10
|
Hong A, Han DD, Wright CJ, Burch T, Piper J, Osiowy C, Gao C, Chiang S, Magill T, Dick K, Booth TF, Li X, He R. The interaction between hepatitis B virus X protein and AIB1 oncogene is required for the activation of NFκB signal transduction. Biochem Biophys Res Commun 2012; 423:6-12. [PMID: 22627138 DOI: 10.1016/j.bbrc.2012.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 11/25/2022]
Abstract
We identified the interaction between HBV X (HBx) protein and the oncogene AIB1 (amplified in breast cancer 1). A serine/proline motif (SSPSPS) in HBx was found to be required for the interaction. Two LXD motifs [LLXX(X)L, X means any amino acids], LLRNSL and LLDQLHTLL in AIB1 were also found to be involved in the HBx-AIB1 interaction. The HBx-AIB1 interaction was important for the activation of NFκB signal transduction, the HBx mutant that did not interact with AIB1showed dramatically lower NFκB activation activity than the WT HBx. These findings contribute to the new understanding on signal transduction activation mechanisms of HBx.
Collapse
Affiliation(s)
- Andy Hong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB,Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Thillainadesan G, Chitilian JM, Isovic M, Ablack JNG, Mymryk JS, Tini M, Torchia J. TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol Cell 2012; 46:636-49. [PMID: 22560925 DOI: 10.1016/j.molcel.2012.03.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/30/2012] [Accepted: 03/29/2012] [Indexed: 12/13/2022]
Abstract
In this study we examine the mechanisms of dynamic DNA methylation of the p15(ink4b) tumor suppressor gene. Using conventional ChIP and ChiPseq, we identify the p15(ink4b) promoter as a target for the ZNF217 oncogene, the CoREST complex, and DNMT3A. Treatment of cells with TGF-β triggers active demethylation involving loss of ZNF217/CoREST/DNMT3A and the corecruitment of SMAD2/3, CBP, and the DNA glycosylase TDG. Knockdown of TDG, or its functional homolog MBD4, prevents TGF-β-dependent demethylation of p15(ink4b). DNA immunoprecipitation of 5mC and 5hmC indicates that 5mC undergoes conversion to 5hmC prior to activation of p15(ink4b). Remarkably, overexpression of ZNF217 inhibits active demethylation and expression of the p15(ink4b) gene by preventing recruitment of SMAD2/3 and TDG. These findings suggest that active demethylation is essential for regulating a subset of TGF-β-dependent genes. Importantly, disruption of active demethylation by the ZNF217 oncogene may be a paradigm for other oncogenic signals on DNA methylation dynamics.
Collapse
Affiliation(s)
- Gobi Thillainadesan
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|