1
|
de Assis LVM, Lacerda JT, Moraes MN, Domínguez-Amorocho OA, Kinker GS, Mendes D, Silva MM, Menck CFM, Câmara NOS, Castrucci AMDL. Melanopsin (Opn4) is an oncogene in cutaneous melanoma. Commun Biol 2022; 5:461. [PMID: 35562405 PMCID: PMC9106662 DOI: 10.1038/s42003-022-03425-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/27/2022] [Indexed: 02/08/2023] Open
Abstract
The search for new therapeutical targets for cutaneous melanoma and other cancers is an ongoing task. We expanded this knowledge by evaluating whether opsins, light- and thermo-sensing proteins, could display tumor-modulatory effects on melanoma cancer. Using different experimental approaches, we show that melanoma cell proliferation is slower in the absence of Opn4, compared to Opn4WT due to an impaired cell cycle progression and reduced melanocyte inducing transcription factor (Mitf) expression. In vivo tumor progression of Opn4KO cells is remarkably reduced due to slower proliferation, and higher immune system response in Opn4KO tumors. Using pharmacological assays, we demonstrate that guanylyl cyclase activity is impaired in Opn4KO cells. Evaluation of Tumor Cancer Genome Atlas (TCGA) database confirms our experimental data as reduced MITF and OPN4 expression in human melanoma correlates with slower cell cycle progression and presence of immune cells in the tumor microenvironment (TME). Proteomic analyses of tumor bulk show that the reduced growth of Opn4KO tumors is associated with reduced Mitf signaling, higher translation of G2/M proteins, and impaired guanylyl cyclase activity. Conversely, in Opn4WT tumors increased small GTPase and an immune-suppressive TME are found. Such evidence points to OPN4 as an oncogene in melanoma, which could be pharmacologically targeted.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
- Institute of Neurobiology, Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.
| | - José Thalles Lacerda
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gabriela Sarti Kinker
- Laboratory of Translational Immuno-Oncology A. C. Camargo Cancer Center - International Research Center, São Paulo, Brazil
| | - Davi Mendes
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Matheus Molina Silva
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Zhao Y, Zhang X, Li F, Zhang D, Zhang Y, Li X, Song Q, Zhou B, Zhao L, Wang J, Xu D, Cheng J, Li W, Lin C, Yang X, Zeng X, Wang W. Whole Genome Sequencing Analysis to Identify Candidate Genes Associated With the rib eye Muscle Area in Hu Sheep. Front Genet 2022; 13:824742. [PMID: 35368668 PMCID: PMC8964300 DOI: 10.3389/fgene.2022.824742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
In sheep meat production, the rib eye area is an important index to evaluate carcass traits. However, conventional breeding programs have led to slow genetic progression in rib eye muscle area. Operationalizing molecular marker assisted breeding is an optimized breeding method that might improve this situation. Therefore, the present study used whole genome sequencing data to excavate candidate genes associated with the rib eye muscle. Male Hu lambs (n = 776) with pedigrees and 274 lambs with no pedigree were included. The genetic parameters of the rib eye area were estimated using a mixed linear mixed model. The rib eye area showed medium heritability (0.32 ± 0.13). Whole-genome sequencing of 40 large rib eye sheep [17.97 ± 1.14, (cm2)] and 40 small rib eye sheep [7.89 ± 0.79, (cm2)] was performed. Case-control genome-wide association studies and the fixation index identified candidate rib eye-associated genes. Seven single nucleotide polymorphisms (SNPs) in six genes (ALS2, ST6GAL2, LOC105611989, PLXNA4, DPP6, and COL12A1) were identified as candidates. The study population was expanded to 1050 lambs to perform KASPar genotyping on five SNPs, which demonstrated that SNPs in LOC105611989, DPP6, and COL12A1 correlated significantly with the rib eye area, which could be used as genetic markers for molecular breeding of the rib eye area. The results provided genetic parameters estimated on the rib eye area and information for breeding based on carcass traits in Hu sheep.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qizhi Song
- Linze County Animal Disease Prevention and Control Center of Gansu Province, Linze, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Weimin Wang,
| |
Collapse
|
3
|
Lv Y, Wang X, Li X, Xu G, Bai Y, Wu J, Piao Y, Shi Y, Xiang R, Wang L. Nucleotide de novo synthesis increases breast cancer stemness and metastasis via cGMP-PKG-MAPK signaling pathway. PLoS Biol 2020; 18:e3000872. [PMID: 33186350 PMCID: PMC7688141 DOI: 10.1371/journal.pbio.3000872] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 11/25/2020] [Accepted: 09/24/2020] [Indexed: 02/04/2023] Open
Abstract
Metabolic reprogramming to fulfill the biosynthetic and bioenergetic demands of cancer cells has aroused great interest in recent years. However, metabolic reprogramming for cancer metastasis has not been well elucidated. Here, we screened a subpopulation of breast cancer cells with highly metastatic capacity to the lung in mice and investigated the metabolic alternations by analyzing the metabolome and the transcriptome, which were confirmed in breast cancer cells, mouse models, and patients' tissues. The effects and the mechanisms of nucleotide de novo synthesis in cancer metastasis were further evaluated in vitro and in vivo. In our study, we report an increased nucleotide de novo synthesis as a key metabolic hallmark in metastatic breast cancer cells and revealed that enforced nucleotide de novo synthesis was enough to drive the metastasis of breast cancer cells. An increased key metabolite of de novo synthesis, guanosine-5'-triphosphate (GTP), is able to generate more cyclic guanosine monophosphate (cGMP) to activate cGMP-dependent protein kinases PKG and downstream MAPK pathway, resulting in the increased tumor cell stemness and metastasis. Blocking de novo synthesis by silencing phosphoribosylpyrophosphate synthetase 2 (PRPS2) can effectively decrease the stemness of breast cancer cells and reduce the lung metastasis. More interestingly, in breast cancer patients, the level of plasma uric acid (UA), a downstream metabolite of purine, is tightly correlated with patient's survival. Our study uncovered that increased de novo synthesis is a metabolic hallmark of metastatic breast cancer cells and its metabolites can regulate the signaling pathway to promote the stemness and metastasis of breast cancer.
Collapse
Affiliation(s)
- Yajing Lv
- School of Medicine, Nankai University, Tianjin, China
| | | | - Xiaoyu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Guangwei Xu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuting Bai
- School of Medicine, Nankai University, Tianjin, China
| | - Jiayi Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- School of Medicine, Nankai University, Tianjin, China
- * E-mail: (LW); (RX); (YS)
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
- The International Collaborative Laboratory for Biological Medicine of the Ministry of Education, Nankai University School of Medicine, Tianjin, China
- * E-mail: (LW); (RX); (YS)
| | - Longlong Wang
- School of Medicine, Nankai University, Tianjin, China
- * E-mail: (LW); (RX); (YS)
| |
Collapse
|
4
|
Yuanxin Y, Yanhong Z, Qin Z, Sishi T, Yang D, Yi Z, Minjin W, Juan Z, Xiaojun L, Lanlan W, Binwu Y. Pak1 gene functioned differentially in different BCR-ABL subtypes in leukemiagenesis and treatment response through STAT5 pathway. Leuk Res 2019; 79:6-16. [PMID: 30784762 DOI: 10.1016/j.leukres.2019.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023]
Abstract
The BCR-ABL fusion gene (BCR-ABL) has different subtypes such as p210 and p190 with p190 appear to lead to a worse prognosis. To explore the mechanism of difference in pathogenesis and prognosis in different BCR-ABL subtype-related leukemia, expression profile microarray analysis was conducted between p190 and p210 patients and verified by RT-PCR. The p21-activated kinase (PAK1) gene was chosen and regulation of the PAK1-STAT5 biological axis and its influence on proliferation and apoptosis in leukemia cells were also analyzed. The results showed that PAK1 might be an important molecular mechanism of the pathogenic difference between different BCR-ABL subtypes. In P210 (+) chronic myelogenous leukemia (CML), down-regulated PAK1 gene expressions may lead to the suppression of cell proliferation and promotion of apoptosis through phosphorylation of STAT5, with a reverse effect in P190 (+) acute lymphoblastic leukemia(ALL), especially acute B lymphoblastic leukemia (B-ALL). Additionally, in P210 (+) CML, down-regulated PAK1 expression may enhance the effect of TKI, whereas the reverse is true in P190 (+) B-ALL, demonstrating that PAK1 might also be an important therapeutic target between different BCR-ABL subtypes.
Collapse
Affiliation(s)
- Ye Yuanxin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Zhou Yanhong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Zheng Qin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Tang Sishi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Dai Yang
- Department of hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Zhou Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Wang Minjin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Zhou Juan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Lu Xiaojun
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Wang Lanlan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Ying Binwu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Sun Z, Zhang B, Wang C, Fu T, Li L, Wu Q, Cai Y, Wang J. Forkhead box P3 regulates ARHGAP15 expression and affects migration of glioma cells through the Rac1 signaling pathway. Cancer Sci 2017; 108:61-72. [PMID: 27862679 PMCID: PMC5276829 DOI: 10.1111/cas.13118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 12/25/2022] Open
Abstract
Forkhead box P3 (FOXP3) plays a crucial role in the development and function of regulatory T cells and was recently identified as a tumor suppressor in different cancer types. Forkhead box P3 is expressed in normal brain tissues, but is strongly downregulated or absent in glioblastomas. In order to understand the FOXP3 adjustment mechanisms in glioma cells, we performed a DNA microarray in U87 cells overexpressing FOXP3 and validated the differences using quantitative real‐time PCR, Western blot analysis, and immunohistochemistry in vitro and in vivo. We found that FOXP3 can regulate the expression of ARHGAP15. Expression of FOXP3 was also correlated with ARHGAP15 in glioma samples. Overexpression of FOXP3 inhibited glioma cell migration through ARHGAP15 upregulation and Rac1 inactivation. Silencing of FOXP3 promoted migration through ARHGAP15 downregulation and Rac1 activation. ARHGAP15, a GTPase‐activating protein for Rac1, inhibits small GTPase signaling in a dual negative manner. We found that there is a correlation between expression of ARHGAP15 and glioma level. The small GTPase Rac1 plays an important role in cell migration. In addition, we found that FOXP3 regulates expression of epithelial–mesenchymal transition markers E‐cadherin and N‐cadherin, which is important given that epithelial–mesenchymal transition is critically involved in tumor spreading and dissemination. Thus, FOXP3 or ARHGAP15 may serve as a new molecular target for antimetastatic therapies in treating glioma.
Collapse
Affiliation(s)
- Zhen Sun
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Biao Zhang
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Chen Wang
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Tao Fu
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Lianling Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Qiaoli Wu
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Jinhuan Wang
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
6
|
Yin XL, Tang XD, Wang FY, Chen T, Lv L, Ma XX, Tian YX. G protein coupled signal transduction mechanisms in malfunction of smooth muscle relaxation and contraction in functional dyspepsia. Shijie Huaren Xiaohua Zazhi 2016; 24:886. [DOI: 10.11569/wcjd.v24.i6.886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
André G, Sandoval JE, Retailleau K, Loufrani L, Toumaniantz G, Offermanns S, Rolli-Derkinderen M, Loirand G, Sauzeau V. Smooth muscle specific Rac1 deficiency induces hypertension by preventing p116RIP3-dependent RhoA inhibition. J Am Heart Assoc 2014; 3:e000852. [PMID: 24938713 PMCID: PMC4309079 DOI: 10.1161/jaha.114.000852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Increasing evidence implicates overactivation of RhoA as a critical component of the pathogenesis of hypertension. Although a substantial body of work has established that Rac1 functions antagonize RhoA in a broad range of physiological processes, the role of Rac1 in the regulation of vascular tone and blood pressure is not fully elucidated. Methods and Results To define the role of Rac1 in vivo in vascular smooth muscle cells (vSMC), we generated smooth muscle (SM)‐specific Rac1 knockout mice (SM‐Rac1‐KO) and performed radiotelemetric blood pressure recordings, contraction measurements in arterial rings, vSMC cultures and biochemical analyses. SM‐Rac1‐KO mice develop high systolic blood pressure sensitive to Rho kinase inhibition by fasudil. Arteries from SM‐Rac1‐KO mice are characterized by a defective NO‐dependent vasodilation and an overactivation of RhoA/Rho kinase signaling. We provide evidence that Rac1 deletion‐induced hypertension is due to an alteration of cGMP signaling resulting from the loss of Rac1‐mediated control of type 5 PDE activity. Consequently, cGMP‐dependent phosphorylation and binding of RhoA with its inhibitory partner, the phosphatase‐RhoA interacting protein (p116RIP3), are decreased. Conclusions Our data reveal that the depletion of Rac1 in SMC decreases cGMP‐dependent p116RIP3/RhoA interaction and the subsequent inhibition of RhoA signaling. Thus, we unveil an in vivo role of Rac1 in arterial blood pressure regulation and a new pathway involving p116RIP3 that contributes to the antagonistic relationship between Rac1 and RhoA in vascular smooth muscle cells and their opposite roles in arterial tone and blood pressure.
Collapse
Affiliation(s)
- Gwennan André
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Juan E Sandoval
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Kevin Retailleau
- Inserm UMR_S1083, CNRS UMR_C6214, BNMI, Angers, F-49000, France (K.R., L.L.)
| | - Laurent Loufrani
- Inserm UMR_S1083, CNRS UMR_C6214, BNMI, Angers, F-49000, France (K.R., L.L.)
| | - Gilles Toumaniantz
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (S.O.)
| | - Malvyne Rolli-Derkinderen
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.)
| | - Gervaise Loirand
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) CHU Nantes, l'institut du thorax, Nantes, F-44000, France (G.L., V.S.)
| | - Vincent Sauzeau
- Inserm UMR_S1087, CNRS UMR_C6291, l'institut du thorax, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) Université de Nantes, Nantes, F-44000, France (G.A., J.E.S., G.T., M.R.D., G.L., V.S.) CHU Nantes, l'institut du thorax, Nantes, F-44000, France (G.L., V.S.)
| |
Collapse
|
8
|
Chak K, Kolodkin AL. Function of the Drosophila receptor guanylyl cyclase Gyc76C in PlexA-mediated motor axon guidance. Development 2014; 141:136-47. [PMID: 24284209 PMCID: PMC3865755 DOI: 10.1242/dev.095968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
The second messengers cAMP and cGMP modulate attraction and repulsion mediated by neuronal guidance cues. We find that the Drosophila receptor guanylyl cyclase Gyc76C genetically interacts with Semaphorin 1a (Sema-1a) and physically associates with the Sema-1a receptor plexin A (PlexA). PlexA regulates Gyc76C catalytic activity in vitro, and each distinct Gyc76C protein domain is crucial for regulating Gyc76C activity in vitro and motor axon guidance in vivo. The cytosolic protein dGIPC interacts with Gyc76C and facilitates Sema-1a-PlexA/Gyc76C-mediated motor axon guidance. These findings provide an in vivo link between semaphorin-mediated repulsive axon guidance and alteration of intracellular neuronal cGMP levels.
Collapse
Affiliation(s)
- Kayam Chak
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation. PLoS One 2013; 8:e77027. [PMID: 24086766 PMCID: PMC3785432 DOI: 10.1371/journal.pone.0077027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 09/05/2013] [Indexed: 02/05/2023] Open
Abstract
High concentrations of reactive oxygen species (ROS) induce cellular damage, however at lower concentrations ROS act as intracellular second messengers. In this study, we demonstrate that serotonin (5-HT) transactivates the platelet-derived growth factor (PDGF) type β receptor as well as the TrkB receptor in neuronal cultures and SH-SY5Y cells, and that the transactivation of both receptors is ROS-dependent. Exogenous application of H2O2 induced the phosphorylation of these receptors in a dose-dependent fashion, similar to that observed with 5-HT. However the same concentrations of H2O2 failed to increase ERK1/2 phosphorylation. Yet, the NADPH oxidase inhibitors diphenyleneiodonium chloride and apocynin blocked both 5-HT-induced PDGFβ receptor phosphorylation and ERK1/2 phosphorylation. The increases in PDGFβ receptor and ERK1/2 phosphorylation were also dependent on protein kinase C activity, likely acting upstream of NADPH oxidase. Additionally, although the ROS scavenger N-acetyl-l-cysteine abrogated 5-HT-induced PDGFβ and TrkB receptor transactivation, it was unable to prevent 5-HT-induced ERK1/2 phosphorylation. Thus, the divergence point for 5-HT-induced receptor tyrosine kinase (RTK) transactivation and ERK1/2 phosphorylation occurs at the level of NADPH oxidase in this system. The ability of 5-HT to induce the production of ROS resulting in transactivation of both PDGFβ and TrkB receptors may suggest that instead of a single GPCR to single RTK pathway, a less selective, more global RTK response to GPCR activation is occurring.
Collapse
|
10
|
Radu M, Rawat SJ, Beeser A, Iliuk A, Tao WA, Chernoff J. ArhGAP15, a Rac-specific GTPase-activating protein, plays a dual role in inhibiting small GTPase signaling. J Biol Chem 2013; 288:21117-21125. [PMID: 23760270 DOI: 10.1074/jbc.m113.459719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Signaling from small GTPases is a tightly regulated process. In this work we used a protein microarray screen to identify the Rac-specific GAP, ArhGAP15, as a substrate of the Rac effectors Pak1 and Pak2. In addition to serving as a substrate of Pak1/2, we found that ArhGAP15, via its PH domain, bound to these kinases. The association of ArhGAP15 to Pak1/2 resulted in mutual inhibition of GAP and kinase catalytic activity, respectively. Knock-down of ArhGAP15 resulted in activation of Pak1/2, both indirectly, as a result of Rac activation, and directly, as a result of disruption of the ArhGAP15/Pak complex. Our data suggest that ArhGAP15 plays a dual negative role in regulating small GTPase signaling, by acting at the level of the GTPase itself, as well interacting with its effector, Pak kinase.
Collapse
Affiliation(s)
- Maria Radu
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Sonali J Rawat
- the Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania 19102, and
| | - Alexander Beeser
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Anton Iliuk
- the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Weiguo Andy Tao
- the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jonathan Chernoff
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111,.
| |
Collapse
|
11
|
Huang XG, Chen YZ, Zhang ZT, Wei YT, Ma HZ, Zhang T, Zhang SC. Rac1 modulates the vitreous-induced plasticity of mesenchymal movement in retinal pigment epithelial cells. Clin Exp Ophthalmol 2013; 41:779-87. [PMID: 23331298 DOI: 10.1111/ceo.12070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND The vitreous has been shown to induce epithelial-mesenchymal transdifferentiation because it induces fibroblast-like morphology, enhanced migration and invasion in retinal pigment epithelial cells in proliferative vitreoretinopathy. Rac1 is the principal mediator of cell migration. In the current study, the relationship between Rac1 and cell migration, and invasion in vitreous-transformed retinal pigment epithelial cells was investigated using NSC23766, a specific inhibitor of Rac guanosine-5'-triphosphatase activity, and the involvement of a Rac1 guanosine-5'-triphosphatase-dependent pathway was detected. DESIGN One-way design with multiple levels and repeated measurement design. PARTICIPANTS AND SAMPLES The vitreous humor was collected from 20 healthy donor eyes and the retinal pigment epithelial cells were obtained from 9 healthy donor eyes. METHODS Human low-passage retinal pigment epithelial cells were treated with normal medium or 25% vitreous medium. Rac1 activity was measured using a pull-down assay. The cytotoxicity of NSC23766 was measured using the trypan blue dye exclusion test. Cell migration was measured using a wound healing assay. Cell invasion was determined using a transwell invasion assay. Protein expression of Rac1 and phosphorylation of LIM kinase 1 and cofilin were detected by Western blot analysis. MAIN OUTCOME MEASURES Cell migration, invasion, Rac1 activity and phosphorylation of LIM kinase 1 and cofilin. RESULTS Rac1guanosine-5'-triphosphatase was activated in vitreous-transformed retinal pigment epithelial cells. A Rac inhibitor suppressed vitreous-induced migration and invasion in retinal pigment epithelial cells. Cofilin phosphorylation was activated by vitreous treatment but blocked by NSC23766. CONCLUSIONS Rac1 mediates vitreous-transformed retinal pigment epithelial cells' plasticity of mesenchymal movement via Rac1 guanosine-5'-triphosphatase-dependent pathways that modulate LIM kinase 1 and cofilin activity. Rac inhibition may be considered a novel treatment for proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Xiong-gao Huang
- State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Hainan Eye Hospital, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Huang X, Wei Y, Ma H, Zhang S. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2012; 419:395-400. [PMID: 22349509 DOI: 10.1016/j.bbrc.2012.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/04/2012] [Indexed: 11/28/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous-transformed human RPE cells undergo cytoskeletal rearrangements via Rac1 GTPase-dependent pathways that modulate LIMK1 and cofilin activity. The TGFβ-like activity of the vitreous may participate in this effect. Actin polymerization causes the cytoskeletal rearrangements that lead to the plasticity of vitreous-transformed RPE cells in PVR.
Collapse
Affiliation(s)
- Xionggao Huang
- State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | |
Collapse
|
13
|
Xudong L, Guangyi W. Effect of blocking Rac1 expression in cholangiocarcinoma QBC939 cells. Braz J Med Biol Res 2011; 44:483-8. [DOI: 10.1590/s0100-879x2011007500057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/25/2011] [Indexed: 11/22/2022] Open
Affiliation(s)
- Liu Xudong
- Jilin University, China; Inner Mongolia Medical College, China
| | | |
Collapse
|