1
|
Sahota JS, Guleria K, Sambyal V. XRCC1 Polymorphisms p.Arg194Trp, p.Arg280His, and p.Arg399Gln, Polycyclic Aromatic Hydrocarbons, and Infertility: A Case-Control and In Silico Study. Biochem Genet 2025; 63:730-760. [PMID: 38514504 DOI: 10.1007/s10528-024-10743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
XRCC1 is involved in repair of single-strand breaks generated by mutagenic exposure. Polymorphisms within XRCC1 affect its ability to efficiently repair DNA damage. Polycyclic aromatic hydrocarbons or PAHs are genotoxic compounds which form bulky DNA adducts that are linked with infertility. Few reports suggest combined role of XRCC1 polymorphisms and PAHs in infertility. Present study investigates association of three XRCC1 polymorphisms (p.Arg194Trp, p.Arg280His, p.Arg399Gln) with male and female infertility in a North-West Indian population using case-control approach. Additionally, in silico approach has been used to predict whether XRCC1 polymorphisms effect interaction of XRCC1 with different PAHs. For case-control study, XRCC1 polymorphisms were screened in peripheral blood samples of age- and gender-matched 201 infertile cases (♂-100, ♀-101) and 201 fertile controls (♂-100, ♀-101) using PCR-RFLP method. For in silico study, AutoDock v4.2.6 was used for molecular docking of B[a]P, BPDE-I, ( ±)-anti-BPDE, DB[a,l]P, 1-N, 2-N, 1-OHP, 2-OHF with XRCC1 and assess effect of XRCC1 polymorphisms on their interaction. In case-control study, statistical analysis showed association of XRCC1 p.Arg280His GA genotype (p = 0.027), A allele (p = 0.019) with reduced risk of male infertility. XRCC1 p.Arg399Gln AA genotype (p = 0.021), A allele (p = 0.014) were associated with reduced risk for female primary infertility. XRCC1 p.Arg194Trp T allele was associated with increased risk for female infertility (p = 0.035). In silico analysis showed XRCC1-PAH interaction with non-significant effect of XRCC1 polymorphisms on predicted binding. Therefore, present study concludes that XRCC1 polymorphism-modified risk for male and female infertility in North-West Indians without significant effect on predicted XRCC1-PAH interactions. This is the first report on XRCC1 in female infertility.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
2
|
Upadhyay S, Dubey PK. Gene variants polymorphisms and uterine leiomyoma: an updated review. Front Genet 2024; 15:1330807. [PMID: 38572418 PMCID: PMC10987786 DOI: 10.3389/fgene.2024.1330807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Uterine leiomyoma, commonly referred to as fibroids, is a benign tumor that develops in the muscular wall of the uterus. These growths are non-cancerous and can vary in size, ranging from tiny nodules to larger masses. Uterine leiomyomas often occur during a woman's reproductive years and can lead to symptoms such as heavy menstrual bleeding, pelvic pain, and pressure on nearby organs. While the exact cause is not fully understood, hormonal factors, particularly estrogen and progesterone, are believed to play a role in their development. The exploration of connections between genetic variants and uterine leiomyoma has captivated scientific attention for numerous years. The results from investigations remain a subject of intrigue within the scientific community. To date, the findings regarding the relationships between single nucleotide polymorphisms (SNPs) and uterine leiomyoma have exhibited some inconsistencies. However, amidst these inconsistencies, several promising outcomes have emerged that hold the potential to shape future research endeavors. These promising leads could pave the way for the development of innovative targeted therapies and novel prognostic biomarkers. This review specifically centers on accentuating the existing literature data concerning genetic variants that have been explored for their potential connections to uterine leiomyoma. Additionally, it underscores the prospects of employing genetic variations as diagnostic and prognostic biomarkers for individuals diagnosed with uterine leiomyoma.
Collapse
Affiliation(s)
| | - Pawan K. Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Toprani SM, Kelkar Mane V. Role of DNA damage and repair mechanisms in uterine fibroid/leiomyomas: a review. Biol Reprod 2020; 104:58-70. [PMID: 32902600 DOI: 10.1093/biolre/ioaa157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
There has been a significant annual increase in the number of cases of uterine leiomyomas or fibroids (UF) among women of all races and ages across the world. A fortune is usually spent by the healthcare sector for fibroid-related treatments and management. Molecular studies have established the higher mutational heterogeneity in UF as compared to normal myometrial cells. The contribution of DNA damage and defects in repair responses further increases the mutational burden on the cells. This in turn leads to genetic instability, associated with cancer risk and other adverse reproductive health outcomes. Such and many more growing bodies of literature have highlighted the genetic/molecular, biochemical and clinical aspects of UF; none the less there appear to be a lacuna bridging the bench to bed gap in addressing and preventing this disease. Presented here is an exhaustive review of not only the molecular mechanisms underlying the predisposition to the disease but also possible strategies to effectively diagnose, prevent, manage, and treat this disease.
Collapse
Affiliation(s)
- Sneh M Toprani
- Department of Biotechnology, University of Mumbai, Kalina, Mumbai, India
| | - Varsha Kelkar Mane
- Department of Biotechnology, University of Mumbai, Kalina, Mumbai, India
| |
Collapse
|
4
|
Yang Q, Laknaur A, Elam L, Ismail N, Gavrilova-Jordan L, Lue J, Diamond MP, Al-Hendy A. Identification of Polycomb Group Protein EZH2-Mediated DNA Mismatch Repair Gene MSH2 in Human Uterine Fibroids. Reprod Sci 2016; 23:1314-25. [PMID: 27036951 DOI: 10.1177/1933719116638186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Uterine fibroids (UFs) are benign smooth muscle neoplasms affecting up to 70% of reproductive age women. Treatment of symptomatic UFs places a significant economic burden on the US health-care system. Several specific genetic abnormalities have been described as etiologic factors of UFs, suggesting that a low DNA damage repair capacity may be involved in the formation of UF. In this study, we used human fibroid and adjacent myometrial tissues, as well as an in vitro cell culture model, to evaluate the expression of MutS homolog 2 (MSH2), which encodes a protein belongs to the mismatch repair system. In addition, we deciphered the mechanism by which polycomb repressive complex 2 protein, EZH2, deregulates MSH2 in UFs. The RNA expression analysis demonstrated the deregulation of MSH2 expression in UF tissues in comparison to its adjacent myometrium. Notably, protein levels of MSH2 were upregulated in 90% of fibroid tissues (9 of 10) as compared to matched adjacent myometrial tissues. Human fibroid primary cells treated with 3-deazaneplanocin A (DZNep), chemical inhibitor of EZH2, exhibited a significant increase in MSH2 expression (P < .05). Overexpression of EZH2 using an adenoviral vector approach significantly downregulated the expression of MSH2 (P < .05). Chromatin immunoprecipitation assay demonstrated that enrichment of H3K27me3 in promoter regions of MSH2 was significantly decreased in DZNep-treated fibroid cells as compared to vehicle control. These data suggest that EZH2-H3K27me3 regulatory mechanism dynamically changes the expression levels of DNA mismatch repair gene MSH2, through epigenetic mark H3K27me3. MSH2 may be considered as a marker for early detection of UFs.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Archana Laknaur
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lelyand Elam
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nahed Ismail
- Clinical Microbiology Division, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Larisa Gavrilova-Jordan
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John Lue
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael P Diamond
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ayman Al-Hendy
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Yang Q, Nair S, Laknaur A, Ismail N, Diamond MP, Al-Hendy A. The Polycomb Group Protein EZH2 Impairs DNA Damage Repair Gene Expression in Human Uterine Fibroids. Biol Reprod 2016; 94:69. [PMID: 26888970 PMCID: PMC4829092 DOI: 10.1095/biolreprod.115.134924] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
Uterine fibroids are benign, smooth muscle tumors that occur in approximately 70%-80% of women by age 50 yr. The cellular and molecular mechanism(s) by which uterine fibroids (UFs) develop are not fully understood. Accumulating evidence demonstrates that several genetic abnormalities, including deletions, rearrangements, translocations, as well as mutations, have been found in UFs. These genetic anomalies suggest that low DNA damage repair capacity may be involved in UF formation. The objective of this study was to determine whether expression levels of DNA damage repair-related genes were altered, and how they were regulated in the pathogenesis of UFs. Expression levels of DNA repair-related genes RAD51 and BRCA1 were deregulated in fibroid tissues as compared to adjacent myometrial tissues. Expression levels of chromatin protein enhancer of zeste homolog 2 (EZH2) were higher in a subset of fibroids as compared to adjacent myometrial tissues by both immunohistochemistry and Western blot analysis. Treatment with an inhibitor of EZH2 markedly increased expression levels of RAD51 and BRCA1 in fibroid cells and inhibited cell proliferation paired with cell cycle arrest. Restoring the expression of RAD51 and BRCA1 by treatment with EZH2 inhibitor was dependent on reducing the enrichment of trimethylation of histone 3 lysine 27 epigenetic mark in their promoter regions. This study reveals the important role of EZH2-regulated DNA damage-repair genes via histone methylation in fibroid biology, and may provide novel therapeutic targets for the medical treatment of women with symptomatic UFs.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| | - Sangeeta Nair
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| | - Archana Laknaur
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| | - Nahed Ismail
- Clinical Microbiology Division, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael P Diamond
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| | - Ayman Al-Hendy
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
6
|
Wang C, Ai Z. Association of XRCC1 polymorphisms with thyroid cancer risk. Tumour Biol 2014; 35:4791-7. [PMID: 24477575 DOI: 10.1007/s13277-014-1629-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022] Open
Abstract
Due to the important role in the DNA repair pathways, numerous studies have been carried out to explore the relationship between the polymorphisms in the X-ray repair cross-complementing group 1 (XRCC1) gene and thyroid cancer risk. But previous reports have produced conflicting results. Thus, we performed an updated comprehensive meta-analysis to better investigate the association of the XRCC1 polymorphisms with thyroid cancer risk. There were a total of nine studies included with 1,621 cases and 3,669 controls examining the effects of the XRCC1 Arg280His, Arg399Gln, and Arg194Trp polymorphisms on the susceptibility of thyroid cancer. In our study, the XRCC1 Arg280His polymorphism was found to be associated with an increased thyroid cancer risk in the Caucasian population [allelic contrast: odds ratio (OR) = 1.38, 95% CI = 1.05-1.80, P(Z) = 0.02, P(Q) = 0.61; dominant model: OR = 1.43, 95% CI = 1.08-1.89, P(Z) = 0.01, P(Q) = 0.57]. The Arg399Gln polymorphism was associated with a significant decreased risk [allelic contrast: OR = 0.73, 95% CI = 0.59-0.92, P(Z) = 0.006, P(Q) = 0.31; dominant model: OR = 0.73, 95% CI = 0.55-0.97, P(Z) = 0.03, P(Q) = 0.33; recessive model: OR = 0.56, 95% CI = 0.34-0.93, P(Z) = 0.02, P(Q) = 0.59], while the Arg194Trp SNP conferred an increased risk for thyroid cancer in the mixed populations [allelic contrast: OR = 1.49, 95% CI = 1.02-2.17, P(Z) = 0.04]. To conclude, the present meta-analysis demonstrated that the polymorphisms in the XRCC1 gene may be associated with developing of thyroid cancer.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | | |
Collapse
|
7
|
Zhao D, Rogers PAW. Is fibroid heterogeneity a significant issue for clinicians and researchers? Reprod Biomed Online 2013; 27:64-74. [PMID: 23669014 DOI: 10.1016/j.rbmo.2013.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/17/2013] [Accepted: 04/02/2013] [Indexed: 11/16/2022]
Abstract
The clinical and scientific literature overwhelmingly deals with fibroids as a single entity or disease. This convenient assumption of homogeneity may be an important oversight given that substantial evidence exists for heterogeneity between fibroids at many levels. Failure to recognize and accommodate fibroid heterogeneity can have significant ramifications for both clinical treatment decisions and research protocol design. The aim of this article is to review the current knowledge of fibroid heterogeneity and to identify key areas where fibroid heterogeneity should be taken into consideration both clinically and when designing research protocols. Uterine leiomyomata display significant and well-documented heterogeneity in symptoms, diagnostic imaging appearance, pathology, genetic background and therapeutic requirements. Additional research is needed to better understand fibroid heterogeneity as it relates to pathogenesis, molecular targets for potential new therapies, patient symptoms and, ultimately, treatment. To this list should also be added heterogeneity of genetics, lifestyle and individual clinical characteristics of the fibroid. Increasingly, an understanding of uterine leiomyoma heterogeneity will be of importance for clinicians who see patients with this common and costly disease.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Minimally Invasive Gynecological Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China
| | | |
Collapse
|
8
|
Zhang K, Zhou B, Wang Y, Rao L, Zhang L. The XRCC1 Arg280His polymorphism contributes to cancer susceptibility: an update by meta-analysis of 53 individual studies. Gene 2012; 510:93-101. [DOI: 10.1016/j.gene.2012.08.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/07/2012] [Accepted: 08/24/2012] [Indexed: 12/31/2022]
|
9
|
Karahalil B, Bohr VA, Wilson DM. Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Hum Exp Toxicol 2012; 31:981-1005. [PMID: 23023028 DOI: 10.1177/0960327112444476] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic variation in DNA repair genes can modulate DNA repair capacity and may be related to cancer risk. However, study findings have been inconsistent. Inheritance of variant DNA repair genes is believed to influence individual susceptibility to the development of environmental cancer. Reliable knowledge on which the base excision repair (BER) sequence variants are associated with cancer risk would help elucidate the mechanism of cancer. Given that most of the previous studies had inadequate statistical power, we have conducted a systematic review on sequence variants in three important BER proteins. Here, we review published studies on the association between polymorphism in candidate BER genes and cancer risk. We focused on three key BER genes: 8-oxoguanine DNA glycosylase (OGG1), apurinic/apyrimidinic endonuclease (APE1/APEX1) and x-ray repair cross-complementing group 1 (XRCC1). These specific DNA repair genes were selected because of their critical role in maintaining genome integrity and, based on previous studies, suggesting that single-nucleotide polymorphisms (SNPs) in these genes have protective or deleterious effects on cancer risk. A total of 136 articles in the December 13, 2010 MEDLINE database (National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/pubmed/) reporting polymorphism in OGG1, XRCC1 or APE1 genes were analyzed. Many of the reported SNPs had diverse association with specific human cancers. For example, there was a positive association between the OGG1 Ser326Cys variant and gastric and lung cancer, while the XRCC1 Arg399Gln variant was associated with reduced cancer risk. Gene-environment interactions have been noted and may be important for colorectal and lung cancer risk and possibly other human cancers.
Collapse
Affiliation(s)
- B Karahalil
- Department of Toxicology, Gazi University, Ankara, Turkey.
| | | | | |
Collapse
|
10
|
Base excision repair pathway genes polymorphism in prostate and bladder cancer risk in North Indian population. Mech Ageing Dev 2011; 133:127-32. [PMID: 22019847 DOI: 10.1016/j.mad.2011.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 09/24/2011] [Accepted: 10/06/2011] [Indexed: 12/30/2022]
Abstract
PURPOSE Carcinogens causes DNA damage, including oxidative lesions that are removed efficiently by the base excision repair (BER) pathway. Variations in BER genes may reduce DNA repair capacity, leading to development of urological cancers. METHODS This study included 195 prostate cancer (PCa) and 212 bladder cancer (BC) patients and 250 controls who had been frequency matched by age, sex, and ethnicity. We genotyped XRCC1 Exon 6 (C>T), 9 (G>A), 10 (G>A), OGG1 Exon 7 (C>G) and APE1 Exon 5 (T>G) genes polymorphism using PCR-RFLP and ARMS. RESULTS GA of XRCC1 Exon 9 demonstrated increased risk with PCa as well as in BC (p=0.001; p=0.006). Similarly variant containing genotype revealed association with PCa (p=0.031). Haplotype of XRCC1 also associated with significant risk for PCa and BC. The APE1 GG genotype showed a decreased risk of BC (OR=0.25; p=0.017). Variant genotype GG of OGG1 demonstrated significant risk with BC (p=0.028). CONCLUSIONS Our observations suggested increased risk for PCa and BC in case of GA genotype for XRCC1, and variant GG in case of OGG1. However APE1 GG genotype conferred a protective association with BC susceptibility. Larger studies and the more SNPs in the same pathway are needed to verify these findings.
Collapse
|
11
|
García-Quispes WA, Pérez-Machado G, Akdi A, Pastor S, Galofré P, Biarnés F, Castell J, Velázquez A, Marcos R. Association studies of OGG1, XRCC1, XRCC2 and XRCC3 polymorphisms with differentiated thyroid cancer. Mutat Res 2011; 709-710:67-72. [PMID: 21414327 DOI: 10.1016/j.mrfmmm.2011.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
The role of the DNA repair genes OGG1, XRCC1, XRCC2 and XRCC3 on differentiated thyroid cancer (DTC) susceptibility was examined in 881 individuals (402 DTC and 479 controls). DNA repair genes were proposed as candidate genes, since the current data indicate that exposure to ionizing radiation is the only established factor in the development of thyroid cancer, especially when it occurs in early stages of life. We have genotyped DNA repair genes involved in base excision repair (BER) (OGG1, Ser326Cys; XRCC1, Arg280His and Arg399Gln), and homologous recombination repair (HRR) (XRCC2, Arg188His and XRCC3, ISV-14G). Genotyping was carried out using the iPLEX (Sequenom) technique. Multivariate logistic regression analyses were performed in a case-control study design. From all the studied polymorphism, only a positive association (OR=1.58, 95% CI 1.05-2.46, P=0.027) was obtained for XRCC1 (Arg280His). No associations were observed for the other polymorphisms. No effects of the histopathological type of tumor were found when the DTC patients were stratified according to the type of tumor. It must be emphasized that this study include the greater patients group, among the few studies carried out until now determining the role of DNA repair genes in thyroid cancer susceptibility.
Collapse
Affiliation(s)
- Wilser-Andrés García-Quispes
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|