1
|
Yang Q, Zhang Z, Chen Z, Wang Y, Chen Y, Zheng J, Li R, Li L, Mo L, Liang Q, Chen F, Wang J, Li X. Flot2 deficiency facilitates B cell-mediated inflammatory responses and endotoxic shock. Immunology 2023; 170:567-578. [PMID: 37688314 DOI: 10.1111/imm.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Sepsis is a life-threatening disease characterized by multiple organ dysfunction. B cells play a pivotal role in sepsis. Here, we first observed the significantly reduced Flot2 gene expression in B cells from patients with bacterial sepsis and endotoxin-induced septic mice. However, the effects of Flot2 on sepsis and B-cell immunity remain unknown. Thus, we sorted B cells from Flot2 knockout (Flot2-/- ) mice, RNA-seq revealed significantly upregulated effector B cell (Beff) cytokines such as Il6, Il1b and Cxcl10 after Flot2 deficiency, while it showed no effect on the expression of regulatory B cell (Breg) cytokines such as Il10, Tgfb. Consistently, elevated Beff cytokine IL-6 and unchanged Breg cytokine IL-10 were shown in B cells from Flot2-/- mice. Similar results were subsequently observed in B cell-specific Flot2 knockout chimeric mice. Notably, Flot2 deficiency aggravated sepsis with increased lung injury and shortened survival time in vivo by facilitating Beffs but not Bregs. Taken together, our data identify Flot2 as a novel controller of B cells, Flot2 deficiency amplifies inflammation by affecting Beffs to participate in the pathogenesis and progression of sepsis.
Collapse
Affiliation(s)
- Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziye Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lihong Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lixia Mo
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengsheng Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Mitophagy: A Potential Target for Pressure Overload-Induced Cardiac Remodelling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2849985. [PMID: 36204518 PMCID: PMC9532135 DOI: 10.1155/2022/2849985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
The pathological mechanisms underlying cardiac remodelling and cardiac dysfunction caused by pressure overload are poorly understood. Mitochondrial damage and functional dysfunction, including mitochondrial bioenergetic disorder, oxidative stress, and mtDNA damage, contribute to heart injury caused by pressure overload. Mitophagy, an important regulator of mitochondrial homeostasis and function, is triggered by mitochondrial damage and participates in the pathological process of cardiovascular diseases. Recent studies indicate that mitophagy plays a critical role in the pressure overload model, but evidence on the causal relationship between mitophagy abnormality and pressure overload-induced heart injury is inconclusive. This review summarises the mechanism, role, and regulation of mitophagy in the pressure overload model. It also pays special attention to active compounds that may regulate mitophagy in pressure overload, which provide clues for possible clinical applications.
Collapse
|
3
|
Wang Z, Zhao YT, Zhao TC. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood) 2020; 246:213-225. [PMID: 32727215 DOI: 10.1177/1535370220944128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic transcription in response to stress or pathological conditions. HDACs interact with a complex co-regulatory network of transcriptional regulators, deacetylate histones or non-histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors have been considered to be a critical target for the treatment of cardiac disease, especially for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy and related pharmacologic interventions in heart disease.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ting C Zhao
- Departments of Surgery and Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
4
|
Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clin Chim Acta 2020; 506:72-83. [PMID: 32092316 DOI: 10.1016/j.cca.2020.02.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/29/2022]
Abstract
The present review is a summary of the recent literature concerning Bnip3 expression, function, and regulation, along with its implications in mitochondrial dysfunction, disorders of mitophagy homeostasis, and development of diseases of secondary mitochondrial dysfunction. As a member of the Bcl-2 family of cell death-regulating factors, Bnip3 mediates mPTP opening, mitochondrial potential, oxidative stress, calcium overload, mitochondrial respiratory collapse, and ATP shortage of mitochondria from multiple cells. Recent studies have discovered that Bnip3 regulates mitochondrial dysfunction, mitochondrial fragmentation, mitophagy, cell apoptosis, and the development of lipid disorder diseases via numerous cellular signaling pathways. In addition, Bnip3 promotes the development of cardiac hypertrophy by mediating inflammatory response or the related signaling pathways of cardiomyocytes and is also responsible for raising abnormal mitophagy and apoptosis progression through multiple molecular signaling pathways, inducing the pathogenesis and progress of hepatocellular carcinoma (HCC). Different molecules regulate Bnip3 expression at both the transcriptional and post-transcriptional level, leading to mitochondrial dysfunction and unbalance of mitophagy in hepatocytes, which promotes the development of non-alcoholic fatty liver disease (NAFLD). Thus, Bnip3 plays an important role in mitochondrial dysfunction and mitophagy homeostasis and has emerged as a promising therapeutic target for diseases of secondary mitochondrial dysfunction.
Collapse
|
5
|
Ren Q, Li H, Wang X. The circular RNA ZNF292 alleviates OGD-induced injury in H9c2 cells via targeting BNIP3. Cell Cycle 2019; 18:3365-3377. [PMID: 31607209 PMCID: PMC6927697 DOI: 10.1080/15384101.2019.1676585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 01/16/2023] Open
Abstract
The research aims to explore the roles and regulatory mechanisms of the circular RNA (circRNA) ZNF292 (circZNF292) in OGD-induced damage in H9c2 cells. The H9c2 cells were treated by OGD and/or transfected with circZNF292, si-circZNF292, pc-Bcl-2/adenovirus E1B-19 kDa-interacting protein 3 (BNIP3) or corresponding controls. Cell viability was detected with the CCK-8. The protein expression levels of the Bax, caspase-3, Beclin-1, p62, LC3, BNIP3, Wnt3a, β-catenin and mammalian target of rapamycin (mTOR) were individually determined via western blot. qRT-PCR was used to examine the circZNF292 expression level. The apoptotic rate was determined by the Annexin V-FITC/PI with flow cytometer. The production of the circZNF292 was promoted by OGD. Abundant circZNF292 released OGD-induced damage by up-regulating cell viability and Wnt3a/β-catenin or mTOR proteins, but down-regulating apoptosis and autophagy. circZNF292 had an opposite effect on these elements mentioned above. Besides, BNIP3 was negatively adjusted by the circZNF292. The BNIP3 overproduction destroyed the protective effect of circZNF292 on H9c2. circZNF292 released OGD-induced damage in the H9c2 cells by targeting the BNIP3 through Wnt/β-catenin and mTOR activation.
Collapse
Affiliation(s)
- Qi Ren
- Department of Cardiology, Jining No.1 People’s Hospital, Jining, China
- Affiliated Jining No.1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Hu Li
- Department of Cardiology, Jining No.1 People’s Hospital, Jining, China
| | - Xiaowen Wang
- Department of Cardiology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
6
|
Wu TW, Liu CC, Hung CL, Yen CH, Wu YJ, Wang LY, Yeh HI. Genetic profiling of young and aged endothelial progenitor cells in hypoxia. PLoS One 2018; 13:e0196572. [PMID: 29708992 PMCID: PMC5927426 DOI: 10.1371/journal.pone.0196572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Age is a major risk factor for diseases caused by ischemic hypoxia, such as stroke and coronary artery disease. Endothelial progenitor cells (EPCs) are the major cells respond to ischemic hypoxia through angiogenesis and vascular remodeling. However, the effect of aging on EPCs and their responses to hypoxia are not well understood. CD34+ EPCs were isolated from healthy volunteers and aged by replicative senescence, which was to passage cells until their doubling time was twice as long as the original cells. Young and aged CD34+ EPCs were exposed to a hypoxic environment (1% oxygen for 48hrs) and their gene expression profiles were evaluated using gene expression array. Gene array results were confirmed using quantitative polymerase chain reaction, Western blotting, and BALB/c female athymic nude mice hindlimb ischemia model. We identified 115 differentially expressed genes in young CD34+ EPCs, 54 differentially expressed genes in aged CD34+ EPCs, and 25 common genes between normoxia and hypoxia groups. Among them, the expression of solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) increased the most by hypoxia in young cells. Gene set enrichment analysis indicated the pathways affected by aging and hypoxia most, including genes “response to oxygen levels” in young EPCs and genes involved “chondroitin sulfate metabolic process” in aged cells. Our study results indicate the key factors that contribute to the effects of aging on response to hypoxia in CD34+ EPCs. With the potential applications of EPCs in cardiovascular and other diseases, our study also provides insight on the impact of ex vivo expansion might have on EPCs.
Collapse
Affiliation(s)
- Tzu-Wei Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- * E-mail:
| | - Chun-Chieh Liu
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chung-Lieh Hung
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Chih-Hsien Yen
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
| |
Collapse
|
7
|
Abstract
Myocardial injury activates inflammatory mediators and provokes the integration of BCL-2/adenovirus E1B 19KD interacting protein 3 (BNIP3) into mitochondrial membranes. Translocation of BNIP3 to mitochondria inexorably causes mitochondrial fragmentation. Heart failure (HF) epitomizes the life-threatening phase of BNIP3-induced mitochondrial dysfunction and cardiomyocyte death. Available data suggest that inflammatory mediators play a key role in cardiac cell demise and have been implicated in the pathogenesis of HF syndrome. In the present study, we reviewed the changes in BNIP3 protein expression levels during inflammatory response and postulated its role in inflammation-mediated HF. We also identified inflammatory mediators' response such as stimulation of TNF-α and NO as potent inducer of BNIP3. Previous studies suggest that the pro-apoptotic protein has a common regulator with IL-1β and induces IL-6-stimulated cardiac hypertrophy. These findings corroborate our contention that interventions designed to functionally modulate BNIP3 activity during inflammatory-mediated HF may prove beneficial in preventing HF. Such a revelation will open new avenue for further research to unravel a novel therapeutic strategy in HF diseases. Moreover, understanding of the relationship between BNIP3 and inflammatory mediators in HF pathologies will not only contribute to the discovery of drugs that can inhibit inflammation-mediated heart diseases, but also enhance the current knowledge on the key role BNIP3 plays during inflammation.
Collapse
|
8
|
Chen YF, Pandey S, Day CH, Chen YF, Jiang AZ, Ho TJ, Chen RJ, Padma VV, Kuo WW, Huang CY. Synergistic effect of HIF-1α and FoxO3a trigger cardiomyocyte apoptosis under hyperglycemic ischemia condition. J Cell Physiol 2017; 233:3660-3671. [PMID: 29030976 DOI: 10.1002/jcp.26235] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/29/2017] [Indexed: 01/19/2023]
Abstract
Cardiomyocyte death is an important pathogenic feature of ischemia and heart failure. Through this study, we showed the synergistic role of HIF-1α and FoxO3a in cardiomyocyte apoptosis subjected to hypoxia plus elevated glucose levels. Using gene specific small interfering RNAs (siRNA), semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, nuclear and cytosolic localization and TUNEL assay techniques, we determined that combined function of HIF-1α and FoxO3a under high glucose plus hypoxia condition lead to enhanced expression of BNIP3 inducing cardiomyocyte death. Our results highlighted the importance of the synergistic role of HIF-1α and FoxO3a in cardiomyocyte death which may add insight into therapeutic approaches to pathophysiology associated with ischemic diabetic cardiomyopathies.
Collapse
Affiliation(s)
- Ya-Fang Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Taichung Veteran's General Hospital, Taichung, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin, Taiwan
| | - Ai-Zhi Jiang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vijaya V Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, Ho Chi Minh City, Vietnam.,Department of Biological Science and Technology, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Asokan Shibu M, Kuo WW, Kuo CH, Day CH, Shen CY, Chung LC, Lai CH, Pan LF, Vijaya Padma V, Huang CY. Potential phytoestrogen alternatives exert cardio-protective mechanisms via estrogen receptors. Biomedicine (Taipei) 2017; 7:11. [PMID: 28612709 PMCID: PMC5479424 DOI: 10.1051/bmdcn/2017070204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
The 17 beta-estradiol (E2) is a sex hormone that is most abundant and most active estrogen in premenopausal women. The importance of E2 in providing cardioprotection and reducing the occurrence of heart disease in women of reproductive age has been well recognized. There are three subtype of estrogen receptors (ERs), including ERα, ERβ and GPR30 have been identified and accumulating evidence reveal their roles on E2-mediated genomic and nongenomic pathway in cardiomyocytes against various cardiac insults. In this review, we focus on the estrogen and ERs mediated signaling pathways in cardiomyocytes that determines cardio-protection against various stresses and further discuss the clinical implication of ERs and phytoestrogens. Further we provide some insights on phytoeostrogens which may play as alternatives in estrogen replacement therapies.
Collapse
Affiliation(s)
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Department of Sports Sciences, University of Taipei, Taipei 100, Taiwan
| | | | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung 912,Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan 717, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed-Force, Taichung General Hospital, Taichung 411, Taiwan
| | - Lung-Fa Pan
- Division of Cardiology, Department of Internal Medicine, Armed-Force, Taichung General Hospital, Taichung 411, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiyar University, Coimbatore, Tamil Nadu 641046, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan - School of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
10
|
Inhibition of Cardiac Hypertrophy Effects in D-Galactose-Induced Senescent Hearts by Alpinate Oxyphyllae Fructus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2624384. [PMID: 28479925 PMCID: PMC5396449 DOI: 10.1155/2017/2624384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/14/2016] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
Abstract
Aging is a complex physiological phenomenon accelerated by ROS accumulation, with multisystem decline and increasing vulnerability to degenerative diseases and death. Cardiac hypertrophy is a key pathophysiological component that accompanies the aging process. Alpinate Oxyphyllae Fructus (Alpinia oxyphylla MIQ, AOF) is a traditional Chinese medicine, which provides cardioprotective activity against aging, hypertension, and cerebrovascular disorders. In this study, we found the protective effect of AOF against cardiac hypertrophy in D-galactose-induced aging rat model. The results showed that treating rats with D-galactose resulted in pathological hypertrophy as evident from the morphology change, increased left ventricular weight/whole heart weight, and expression of hypertrophy-related markers (MYH7 and BNP). Both concentric and eccentric cardiac hypertrophy signaling proteins were upregulated in aging rat model. However, these pathological changes were significantly improved in AOF treated group (AM and AH) in a dose-dependent manner. AOF negatively modulated D-galactose-induced cardiac hypertrophy signaling mechanism to attenuate ventricular hypertrophy. These enhanced cardioprotective activities following oral administration of AOF reflect the potential use of AOF for antiaging treatments.
Collapse
|
11
|
Wang Y, Wang J. Mixed hydrogel bead-based tumor spheroid formation and anticancer drug testing. Analyst 2015; 139:2449-58. [PMID: 24699505 DOI: 10.1039/c4an00015c] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Three-dimensional multicellular tumor spheroids have become critical for anticancer study since they may provide a better model than conventional monolayer cultures of cancer cells. Various methods for tumor spheroid formation have been explored. However, only one kind of hydrogel was used in these methods, which has an influence on the size and morphology of the obtained tumor spheroids. Herein, we present a microfluidic droplet-based method for the formation of multicellular tumor spheroids using alginate and matrigel mixed hydrogel beads. By on-chip changing the flow rate of the two hydrogel solutions, mixed hydrogel beads with different volume ratios between alginate and matrigel are obtained. Meanwhile, human cervical carcinoma (HeLa) cells are encapsulated in the mixed hydrogel beads. Acridine orange and propidium iodide double-staining assay shows that the viability of cells encapsulated in the mixed hydrogel beads was more than 90%. After 4 day culture, the multicellular tumor spheroids were successfully formed with spherical shape and uniform size distribution compared with spheroids formed in pure alginate beads. Cytoskeletal analysis by TRITC-phalloidin staining show that HeLa cells in the mixed hydrogel beads closely link to each other. The dose-dependent response assay of HeLa cell spheroids to vincristine show that multicellular spheroids have more powerful resistance to vincristine compared to conventional monolayer culture cells. Taken together, this novel technology may be of importance to facilitate in vitro culture of tumor spheroids for their ever-increasing utilization in modern cell-based medicine.
Collapse
Affiliation(s)
- Yaolei Wang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | |
Collapse
|
12
|
Ren L, Liu W, Wang Y, Wang JC, Tu Q, Xu J, Liu R, Shen SF, Wang J. Investigation of hypoxia-induced myocardial injury dynamics in a tissue interface mimicking microfluidic device. Anal Chem 2012. [PMID: 23205467 DOI: 10.1021/ac3025812] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myocardial infarction is a major cause of morbidity and mortality worldwide. However, the methodological development of a spatiotemporally controllable investigation of the damage events in myocardial infarction remains challengeable. In the present study, we describe a micropillar array-aided tissue interface mimicking microfluidic device for the dynamic study of hypoxia-induced myocardial injury in a microenvironment-controllable manner. The mass distribution in the device was visually characterized, calculated, and systematically evaluated using the micropillar-assisted biomimetic interface, physiologically relevant flows, and multitype transportation. The fluidic microenvironment in the specifically functional chamber for cell positioning and analysis was successfully constructed with high fluidic relevance to the myocardial tissue. We also performed a microenvironment-controlled microfluidic cultivation of myocardial cells with high viability and regular structure integration. Using the well-established culture device with a tissue-mimicking microenvironment, a further on-chip investigation of hypoxia-induced myocardial injury was carried out and the varying apoptotic responses of myocardial cells were temporally monitored and measured. The results show that the hypoxia directionally resulted in observable cell shrinkage, disintegration of the cytoskeleton, loss of mitochondrial membrane potential, and obvious activation of caspase-3, which indicates its significant apoptosis effect on myocardial cells. We believe this microfluidic device can be suitable for temporal investigations of cell activities and responses in myocardial infarction. It is also potentially valuable to the microcontrol development of tissue-simulated studies of multiple clinical organ/tissue disease dynamics.
Collapse
Affiliation(s)
- Li Ren
- Colleges of Veterinary Medicine and Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li PC, Chiu YW, Lin YM, Day CH, Hwang GY, Pai P, Tsai FJ, Tsai CH, Kuo YC, Chang HC, Liu JY, Huang CY. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl(4)-Induced Liver Cirrhosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:139045. [PMID: 23243427 PMCID: PMC3517219 DOI: 10.1155/2012/139045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 12/28/2022]
Abstract
We used the carbon tetrachloride (CCl(4)) induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE) and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl(4) and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W.) or silymarin (0.2 g/kg B.W.). Cardiac eccentric hypertrophy was induced by CCl(4) along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6) signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl(4)-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl(4)-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.
Collapse
Affiliation(s)
- Ping-Chun Li
- Division of Cardiovascular Surgery, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Yung-Wei Chiu
- Emergency Department and Center of Hyperbaric Oxygen Therapy, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | | | - Guang-Yuh Hwang
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Peiying Pai
- Division of Cardiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Fuu-Jen Tsai
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Chang-Hai Tsai
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Yu-Chun Kuo
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Hsiao-Chuan Chang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Jer-Yuh Liu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
14
|
Ho TJ, Huang CC, Huang CY, Lin WT. Fasudil, a Rho-kinase inhibitor, protects against excessive endurance exercise training-induced cardiac hypertrophy, apoptosis and fibrosis in rats. Eur J Appl Physiol 2011; 112:2943-55. [PMID: 22160250 DOI: 10.1007/s00421-011-2270-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023]
Abstract
Excessive endurance exercise training (EEET) is accompanied by cardiac remodeling, changes in ventricular function and increased heart failure risk. Fasudil, a potent Rho-kinase inhibitor, has been demonstrated to blunt cardiomyocyte hypertrophy, cardiac remodeling, and heart failure progression in pre-clinical trials and has been approved for clinical use in Japan. We examined the in vivo bioefficacy of fasudil against EEET-induced cardiac remodeling and the underlying molecular mechanisms. Male Sprague-Dawley rats were randomly divided into three groups: sedentary control (SC), EEET, and EEET with fasudil treatment (EEET-F). Rats in EEET and EEET-F groups ran on a motorized treadmill for 12 weeks. The results revealed that EEET increased myocardial hypertrophy (LV weight/tibial length), myocyte cross-sectional area, hypertrophy-related pathways (IL6/STAT3-MEK5-ERK5, calcineurin-NFATc3, p38 and JNK MAPK), hypertrophic markers (ANP/BNP), pro-apoptotic molecules (cytochrome C, cleaved caspase-3 and PARP), and fibrosis-related pathways (FGF-2-ERK1/2) and fibrosis markers (uPA, MMP-9 and -2). These pathways were then expressed lower in the EEET-F group when compared with the EEET group. The cardiac hypertrophic level, apoptotic pathway and fibrosis signaling were further inhibited in the fasudil-treated group. We systematically investigated the possible signaling pathways leading to EEET-induced cardiac hypertrophy, apoptosis and fibrosis. We also provide evidence for the novel function of fasudil in suppressing EEET-induced cardiac remodeling and impairment by multiple mechanisms, which suggests that the RhoA signaling pathway contributes to EEET-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | | | | | | |
Collapse
|
15
|
Lin DY, Tsai FJ, Tsai CH, Huang CY. Mechanisms governing the protective effect of 17β-estradiol and estrogen receptors against cardiomyocyte injury. Biomedicine (Taipei) 2011. [DOI: 10.1016/j.biomed.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|